Hydrogen rich syngas production by bi-reforming of methane with CO2over Ni supported on CeO2-SrO mixed oxide catalysts

[1]  D. Vo,et al.  Methane bi-reforming over boron-doped Ni/SBA-15 catalyst: Longevity evaluation , 2019, International Journal of Hydrogen Energy.

[2]  S. Kawi,et al.  Sintering and Coke Resistant Core/Yolk Shell Catalyst for Hydrocarbon Reforming , 2019, ChemCatChem.

[3]  A. Adesina,et al.  Bi-reforming of methane on Ni/SBA-15 catalyst for syngas production: Influence of feed composition , 2018, International Journal of Hydrogen Energy.

[4]  Kus Hidajat,et al.  Silica–Ceria sandwiched Ni core–shell catalyst for low temperature dry reforming of biogas: Coke resistance and mechanistic insights , 2018, Applied Catalysis B: Environmental.

[5]  Ziwei Li,et al.  Facile Synthesis of Multi‐Ni‐Core@Ni Phyllosilicate@CeO2 Shell Hollow Spheres with High Oxygen Vacancy Concentration for Dry Reforming of CH4 , 2018 .

[6]  H. Arellano‐Garcia,et al.  Chemical CO2 recycling via dry and bi reforming of methane using Ni-Sn/Al2O3 and Ni-Sn/CeO2-Al2O3 catalysts , 2018 .

[7]  S. Kawi,et al.  Ni-phyllosilicate structure derived Ni–SiO2–MgO catalysts for bi-reforming applications: acidity, basicity and thermal stability , 2018 .

[8]  Chunshan Li,et al.  Carbon Dioxide Methanation over Nickel-Based Catalysts Supported on Various Mesoporous Material , 2018 .

[9]  A. Veen,et al.  Coupled Reforming of Methane to Syngas (2H 2 -CO) over Mg-Al Oxide Supported Ni Catalyst , 2018 .

[10]  P. S. Prasad,et al.  Selective substitution of Ni by Ti in LaNiO3 perovskites: A parameter governing the oxy-carbon dioxide reforming of methane , 2017 .

[11]  G. Xu,et al.  Dynamic Oxygen on Surface: Catalytic Intermediate and Coking Barrier in the Modeled CO2 Reforming of CH4 on Ni (111) , 2016 .

[12]  Daniel J. Haynes,et al.  Bi-reforming of methane on Ni-based pyrochlore catalyst , 2016 .

[13]  Zhongkui Zhao,et al.  Effect of molybdenum carbide concentration on the Ni/ZrO2 catalysts for steam-CO2 bi-reforming of methane , 2015 .

[14]  J. Spivey,et al.  Catalytic bi-reforming of methane: from greenhouse gases to syngas , 2015 .

[15]  C. Battocchio,et al.  Ni/CeO2-Al2O3 catalysts for the dry reforming of methane: the effect of CeAlO3 content and nickel crystallite size on catalytic activity and coke resistance , 2015 .

[16]  Changhyun Pang,et al.  Combined Steam and CO2 Reforming of CH4 on LaSrNiOx Mixed Oxides Supported on Al2O3-Modified SiC Support , 2015 .

[17]  P. S. Prasad,et al.  Influence of method of preparation on the activity of La-Ni-Ce mixed oxide catalysts for dry reforming of methane† , 2014 .

[18]  B. M. Reddy,et al.  Physicochemical characterization and catalytic CO oxidation performance of nanocrystalline Ce–Fe mixed oxides , 2014 .

[19]  G. Olah,et al.  Self-sufficient and exclusive oxygenation of methane and its source materials with oxygen to methanol via metgas using oxidative bi-reforming. , 2013, Journal of the American Chemical Society.

[20]  Thawatchai Maneerung,et al.  CO2 dry-reforming of methane over La0.8Sr0.2Ni0.8M0.2O3 perovskite (M = Bi, Co, Cr, Cu, Fe): Roles of lattice oxygen on C–H activation and carbon suppression , 2012 .

[21]  S. Kawi,et al.  Promotional effect of alkaline earth over Ni–La2O3 catalyst for CO2 reforming of CH4: Role of surface oxygen species on H2 production and carbon suppression , 2011 .

[22]  J. Assaf,et al.  Structural features of La1-xCexNiO3 mixed oxides and performance for the dry reforming of methane , 2006 .

[23]  Young-Sam Oh,et al.  Methane reforming over Ni/Ce-ZrO2 catalysts: effect of nickel content , 2002 .