Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials.

Ge-Sb-Te materials are used in optical DVDs and non-volatile electronic memories (phase-change random-access memory). In both, data storage is effected by fast, reversible phase changes between crystalline and amorphous states. Despite much experimental and theoretical effort to understand the phase-change mechanism, the detailed atomistic changes involved are still unknown. Here, we describe for the first time how the entire write/erase cycle for the Ge(2)Sb(2)Te(5) composition can be reproduced using ab initio molecular-dynamics simulations. Deep insight is gained into the phase-change process; very high densities of connected square rings, characteristic of the metastable rocksalt structure, form during melt cooling and are also quenched into the amorphous phase. Their presence strongly facilitates the homogeneous crystal nucleation of Ge(2)Sb(2)Te(5). As this simulation procedure is general, the microscopic insight provided on crystal nucleation should open up new ways to develop superior phase-change memory materials, for example, faster nucleation, different compositions, doping levels and so on.

[1]  Matthias Wuttig,et al.  Modeling of laser pulsed heating and quenching in optical data storage media , 1999 .

[2]  S. Song,et al.  Building blocks of amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} , 2007 .

[3]  Se-Ho Lee,et al.  Highly scalable non-volatile and ultra-low-power phase-change nanowire memory. , 2007, Nature nanotechnology.

[4]  M. Parrinello,et al.  Coexistence of tetrahedral- and octahedral-like sites in amorphous phase change materials , 2007, 0708.1302.

[5]  D. Suh,et al.  Global and local structures of the Ge-Sb-Te ternary alloy system for a phase-change memory device , 2006 .

[6]  Matthias Wuttig,et al.  Origin of the optical contrast in phase-change materials. , 2007, Physical review letters.

[7]  J. H. Coombs,et al.  Laser‐induced crystallization phenomena in GeTe‐based alloys. II. Composition dependence of nucleation and growth , 1995 .

[8]  J. Tominaga,et al.  Understanding the phase-change mechanism of rewritable optical media , 2004, Nature materials.

[9]  G. Lucovsky,et al.  EXAFS study of amorphous Ge2Sb2Te5 , 2006 .

[10]  J. Gaspard,et al.  Octahedral structure of liquid GeSb2Te4 alloy : first-principles molecular dynamics study , 2007 .

[11]  H. Shieh,et al.  Enhancement of Data Transfer Rate of Phase Change Optical Disk by Doping Nitrogen in Ge–In–Sb–Te Recording Layer , 2004 .

[12]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[13]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[14]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[15]  Matthias Wuttig,et al.  Density changes upon crystallization of Ge2Sb2.04Te4.74 films , 2002 .

[16]  L. V. Pieterson,et al.  Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview , 2005 .

[17]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[18]  Matthias Wuttig,et al.  Kinetics of crystal nucleation in undercooled droplets of Sb- and Te-based alloys used for phase change recording , 2005 .

[19]  M. Wuttig,et al.  Changes in electronic structure and chemical bonding upon crystallization of the phase change material GeSb2Te4. , 2008, Physical review letters.

[20]  Stefan Blügel,et al.  Unravelling the interplay of local structure and physical properties in phase-change materials , 2006 .

[21]  In situ transmission electron microscopy study of the crystallization of Ge2Sb2Te5 , 2004 .

[22]  Noboru Yamada,et al.  Structural basis for the fast phase change of Ge2Sb2Te5: Ring statistics analogy between the crystal and amorphous states , 2006 .

[23]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[24]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[25]  R. Zonca,et al.  Crystal nucleation and growth processes in Ge2Sb2Te5 , 2004 .

[26]  S. Song,et al.  Building blocks of amorphous Ge2Sb2Te5 , 2007 .

[27]  Rajeev Ahuja,et al.  Structure of phase change materials for data storage. , 2006, Physical review letters.

[28]  Richard Dronskowski,et al.  The role of vacancies and local distortions in the design of new phase-change materials. , 2007, Nature materials.

[29]  N. Yamada,et al.  Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe-Sb2Te3 pseudobinary systems. , 2004, Acta crystallographica. Section B, Structural science.

[30]  Rajeev Ahuja,et al.  Unique melting behavior in phase-change materials for rewritable data storage. , 2007, Physical review letters.

[31]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[32]  Matthias Wuttig,et al.  Laser induced crystallization of amorphous Ge2Sb2Te5 films , 2001 .

[33]  R. O. Jones,et al.  Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe , 2007 .

[34]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .