Self-Forecasting Energy Load Stakeholders for Smart Grids

Predictability of energy loads is a big challenge for electricity grids. As the consumption loads are forecasted, the system must stay in balance even when a forecast error occurs. These errors, or imbalances, are simply pushed upstream to the parties responsible for balancing them. With reliable sources of production in place such techniques have been successfully applied for a century now. However, the penetration of unreliable energy supply from renewable sources will completely change operation of energy industry. By adopting the renewable sources of energy, today even the traditional consumers became producers, or the so called ”prosumers”. As such, not only energy is intermittently produced, it will also come from distributed resources. This takes complexity one step further, where forecasted consumer loads are powered by unpredictable and distributed resources. Thereby the value of reliability will significantly grow. Although many events cannot be predicted, such as natural disasters damaging power lines, a significant portion of unpredictability comes directly from consumers. In order to improve system reliability, the emerging business models and roles in Smart Grids call for active participation by traditionally passive consumers. Such opportunities include for instance active involvement in grid operations, participation in local energy markets, or demand response programs etc. To participate in such programs, an accurate self-forecast of energy loads is a prerequisite of key importance. If a prosumer could achieve determinism in his energy signature, via highly accurate load forecast and potentially control over the deviations from that forecast, he could act as a resource that can reliably support needs of other stakeholders. Still, not all stakeholders can achieve it, but for those who do (by any means) additional benefits are expected. This work uses Smart Grids as foundation to build a solution that enables active contribution of the traditionally passive consumers. The challenges are to (1) enable an efficient communication in between stakeholders, (2) reach sufficient forecast accuracy of an individual or a small group of consumers, and to (3) build a system that enables active involvement of the traditionally passive consumers. The main contribution of this dissertation consists of: • Design and (real world) evaluation of an enterprise integration and energy management system – including scalability and performance issues • Assessment of the forecast accuracy impact on small scale aggregations and relevance of energy storage solutions to absorb the forecast errors • System proposal for enabling the deterministic behaviour of traditionally passive consumers – evaluated on a real world case Following the vision of Smart Grids, this work proposes an enterprise integration and energy management system as the foundation for efficient communication between stakeholders. Their awareness is raised by the accessibility of the energy services designed and evaluated in this work. Key performance points of their scalability are also investigated to support a large number of smart meters that will stream their energy readings at high resolution e.g. 15 minutes. Even though the data can be collected, many services are highly time dependent and on-demand near real-time data processing must be in place as well. Great amounts of continuously streaming data challenge such systems. An evaluation of the entire infrastructure is made in a real world trial with 5000 smart meters, as well as the actual implementation of an application built on top of the platform’s energy services. Traditionally, an accurate energy forecast is achieved by large scales of customer aggregation. However, many added-value services of Smart Grids are envisioned for smaller scales, or even individuals, thus a question if a sufficient accuracy can be achieved by them is raised. This work contributes by investigating how accurate smaller scales of aggregation can be. Results show that small scales, e.g. of 150–200 residential stakeholders, or even individuals, e.g. commercial building, can already achieve a significant accuracy. This accuracy is still lower than what retailers of today would achieve (in an aggregation of tens of thousands), and static storage solutions are investigated for further improvement. The results show the potential to address the forecast errors with capacities of 6–10% of stakeholder’s daily consumption. Still, the static solutions bear costs and this work investigates potential of available assets to replace them. Electric vehicles were identified as a promising alternative. Although their behaviour is dynamic, the simulation results show their huge potential in absorbing the errors. If an accurate self-forecast of a stakeholder (or group of them) is achieved by absorbing the errors locally, an external stakeholder cannot be aware of it. Hereby the same infrastructure of smart metering is proposed to be used for continuous reporting of the self-forecasted intervals. Still, a smart energy system needs to be in place to autonomously support stakeholders in respecting their reported load. With this system in place, deterministic behaviour is achieved and new opportunities for many Smart Grid stakeholders are expected. Since the stakeholder’s determinism can be measured, self-forecasting stakeholders can benefit from the flexibility based on the state of their storage. This work proposes an architecture that is used for system design that is evaluated for one of the proposed strategies. The evaluation results showed, in a real world case, that combined contribution of this thesis will lead us to existence of self-forecasting energy load stakeholders. Deutsche Zusammenfassung Die Vorhersagbarkeit von Energieverbräuchen ist eine große Herausforderung für Stromnetze. Obgleich Verbräuche vorhergesagt werden können, muss das Gesamtsystem ausgeglichen sein, auch wenn die Vorhersage einen Fehler beinhaltet. Diese Fehler werden an die darüberliegenden Parteien weitergeleitet, welche für einen entsprechenden Ausgleich verantwortlich sind. Dank verlässlicher Produktionsquellen konnten derartige Techniken ein Jahrhundert lang erfolgreich eingesetzt werden. Die Durchdringung mit unzuverlässiger Energie aus erneuerbaren Quellen wird den Betrieb der Energieindustrie jedoch vollständig verändern. Durch die Einbringung erneuerbarer Energiequellen wurden herkömmliche Konsumenten zu Produzenten, sogenannte Prosumenten. Somit wird Energie nicht nur periodisch erzeugt, sie stammt auch von unterschiedlichen verteilten Ressourcen. Dies erhöht den Grad der Komplexität, indem vorhergesagte Verbräuche durch unvorhersagbare verteilte Ressourcen bedient werden. Der Wert der Vorhersage wird deshalb signifikant an Bedeutung gewinnen. Obgleich viele Ereignisse nicht verhindert werden können, wie etwa durch Naturkatastrophen beschädigte Stromleitungen, stammt ein signifikanter Anteil der Unvorhersagbarkeit unmittelbar vom Konsumenten. Um die Systemverlässlichkeit zu erhöhen fordern aufkommende Geschäftsmodelle in Smart Grids die aktive Teilnahme von traditionell passiven Konsumenten. Derartige Möglichkeiten umfassen beispielsweise die aktive Einbindung in den Netzbetrieb, Teilname an lokalen Energiemärkten sowie Programmen zu Angebot und Nachfrage. Für die Teilnahme an solchen Programmen ist eine genaue Vorhersage des eigenen Energieverbrauchs eine maßgebliche Notwendigkeit. Sollte es dem Prosumenten gelingen, seine Energiesignatur durch höchstgenaue Verbrauchsprognosen und eigene Kontrolle in deren Abweichung zu bestimmen, könnte er verlässlicher anderer Teilnehmer unterstützen. Wenn dies auch nicht für alle Teilnehmer gilt, so werden für diejenigen, denen es gelingt, zusätzliche Anreize erwartet. Diese Arbeit verwendet Smart Grids als Grundlage um eine Lösung zu bauen, die ein aktives Beitragen von traditionell passiven Konsumenten ermöglicht. Die Herausforderungen sind (1) das Ermöglichen einer effizienten Kommunikation zwischen den Teilnehmern, (2) das Erreichen einer hinreichend genauen Vorhersage individueller Konsumenten oder kleiner Gruppen von Konsumenten und (3) der Aufbau eines Systems, welches einen aktiven Einbezug traditionell passiver Konsumenten ermöglicht. Die Hauptbeiträge dieser Dissertation bestehen in: • Entwurf und (praktische) Evaluierung eines Unternehmensintegrationund Energieverwaltungssystems – unter Einbezug der Schwierigkeiten von Skalierbarkeit und Performanz • Bewertung des Einflusses der Vorhersagegenauigkeit auf Aggregationen im Kleinen und Relevanz von Energiespeicherlösungen, um Vorhersagefehler zu absorbieren • Systemvorschlag zur Ermöglichung deterministischen Verhaltens tradionell passiver Konsumenten – evaluiert in einem echten Anwendungsfall Der Vision von Smart Grids folgend, schlägt diese Arbeit ein Unternehmensintegrations und Energieverwaltungssystem vor als Grundlager für effiziente Kommunikation zwischen Teilnehmern. Deren Aufmerksamkeit wird durch die Benutzbarkeit der Energiedienste geweckt, welche in dieser Arbeit entworfen und evaluiert werden. Schlüsselpunkte hinsichtlich der Skalierbarkeit werden ebenfalls untersucht, um eine große Anzahl von Smart Metern zu unterstützen, welche ihre Energiewerte in großer Auflösung, etwa 15 minütig, senden. Obgleich der Möglichkeit Daten zu sammeln, sind viele Dienste sehr zeitkritisch und erfordern darüber hinaus bedarfsgesteuerte nah-echtzeit Datenverarbeitung. Große Menge kontinuierlicher Daten strapzieren solche Systeme. Es wird eine Evaluierung der gesamte Infrastruktur wird anhand 5000 Smart Metern mit echten Daten durchgeführt, sowie eine Evaluierung einer auf der Energiedienste der Plattform aufbauenden Anwendungsimplementierung. Im herkömmlichen Ansatz wird eine genaue Vorhersage des Energieverbrauchs durch die Aggregation von großen Konsumentendatenmengen erzielt. Viele wertschöpfende Dienste von Smart Grids sehen allerdings Datenmengen kleinerer G

[1]  Stamatis Karnouskos,et al.  Using flexible energy infrastructures for demand response in a Smart Grid city , 2012, 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe).

[2]  Stamatis Karnouskos,et al.  An energy market for trading electricity in smart grid neighbourhoods , 2012, 2012 6th IEEE International Conference on Digital Ecosystems and Technologies (DEST).

[3]  Todd Givler,et al.  Advanced Street Lighting Technologies Assessment Project - City of San Jose , 2010 .

[4]  Alessandro Acquisti,et al.  When 25 Cents is Too Much: An Experiment on Willingness-To-Sell and Willingness-To-Protect Personal Information , 2007, WEIS.

[5]  Matthew Andrews,et al.  Modeling and Optimization for Electric Vehicle Charging Infrastructure , 2012 .

[6]  A. Ceclan,et al.  Public lighting systems an energy saving technique and product , 2007, 2007 International Conference on Clean Electrical Power.

[7]  L. Kutt,et al.  Analysis of power consumption and losses in relation to supply voltage levels , 2008, 2008 Power Quality and Supply Reliability Conference.

[8]  N. D. Hatziargyriou,et al.  Evaluation of a Hybrid Power Plant Comprising Used EV-Batteries to Complement Wind Power , 2013, IEEE Transactions on Sustainable Energy.

[9]  Scott B. Peterson,et al.  Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs , 2012 .

[10]  Danny Pudjianto,et al.  Virtual power plant and system integration of distributed energy resources , 2007 .

[11]  Sebastian Lehnhoff,et al.  Assessing reliability of distributed units with respect to the provision of ancillary services , 2013, 2013 11th IEEE International Conference on Industrial Informatics (INDIN).

[12]  George G. Karady,et al.  Advancement in the application of neural networks for short-term load forecasting , 1992 .

[13]  Rob J Hyndman,et al.  Another look at measures of forecast accuracy , 2006 .

[14]  Danilo P. Pinto,et al.  An experimental comparison between different technologies arising for public lighting: LED luminaires replacing high pressure sodium lamps , 2011, 2011 IEEE International Symposium on Industrial Electronics.

[15]  William Kersting,et al.  Distribution System Modeling and Analysis , 2001, Electric Power Generation, Transmission, and Distribution: The Electric Power Engineering Handbook.

[16]  Andreas Riener,et al.  An energy efficient pedestrian aware Smart Street Lighting system , 2011, Int. J. Pervasive Comput. Commun..

[17]  Yilu Liu,et al.  FNET: A Quickly Deployable and Economic System to Monitor the Electric Grid , 2007, 2007 IEEE Conference on Technologies for Homeland Security.

[18]  Stamatis Karnouskos,et al.  Cyber-Physical Systems in the SmartGrid , 2011, 2011 9th IEEE International Conference on Industrial Informatics.

[19]  Stamatis Karnouskos,et al.  Improving Load Forecast in Prosumer Clusters by Varying Energy Storage Size , 2013 .

[20]  José Ramón Cancelo,et al.  Forecasting the electricity load from one day to one week ahead for the Spanish system operator , 2008 .

[21]  Stamatis Karnouskos,et al.  Impact assessment of smart meter grouping on the accuracy of forecasting algorithms , 2013, SAC '13.

[22]  Klemens Böhm,et al.  The Costs of Privacy in Local Energy Markets , 2013, 2013 IEEE 15th Conference on Business Informatics.

[23]  Stamatis Karnouskos,et al.  Developing a web application for monitoring and management of Smart Grid neighborhoods , 2013, 2013 11th IEEE International Conference on Industrial Informatics (INDIN).

[24]  D. Backer Power Quality and Asset Management The Other "Two-Thirds" of AMI Value , 2007, 2007 IEEE Rural Electric Power Conference.

[25]  B. Gou,et al.  An Improved Measurement Placement Algorithm for Network Observability , 2001, IEEE Power Engineering Review.

[26]  Stamatis Karnouskos,et al.  Sensing in power distribution networks via large numbers of smart meters , 2012, 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe).

[27]  M. K. Celik,et al.  An incremental measurement placement algorithm for state estimation , 1995 .

[28]  Yue Yuan,et al.  Modeling of Load Demand Due to EV Battery Charging in Distribution Systems , 2011, IEEE Transactions on Power Systems.

[29]  P. McSharry,et al.  A comparison of univariate methods for forecasting electricity demand up to a day ahead , 2006 .

[30]  K. C. Divya,et al.  Battery Energy Storage Technology for power systems-An overview , 2009 .

[31]  Helfried Brunner,et al.  POWER SNAPSHOT ANALYSIS : A NEW METHOD FOR ANALYZING LOW VOLTAGE GRIDS USING A SMART METERING SYSTEM , 2011 .

[32]  Matjaz B. Juric,et al.  Comparison of performance of Web services, WS-Security, RMI, and RMI-SSL , 2006, J. Syst. Softw..

[33]  J. W. Taylor,et al.  Short-term electricity demand forecasting using double seasonal exponential smoothing , 2003, J. Oper. Res. Soc..

[34]  J. Oyarzabal,et al.  Management of microgrids in market environment , 2005, 2005 International Conference on Future Power Systems.

[35]  Stamatis Karnouskos,et al.  Assessment of high-performance smart metering for the web service enabled smart grid era , 2011, ICPE '11.

[36]  Stamatis Karnouskos,et al.  A survey towards understanding residential prosumers in smart grid neighbourhoods , 2012, 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe).

[37]  Lieven De Marez,et al.  Introducing Smart grids in residential contexts: Consumers' perception of smart household appliances , 2010, 2010 IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply.

[38]  Peter Palensky,et al.  Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads , 2011, IEEE Transactions on Industrial Informatics.

[39]  Mohammed H. Albadi,et al.  A summary of demand response in electricity markets , 2008 .

[40]  Stamatis Karnouskos,et al.  A System for Enabling Facility Management to Achieve Deterministic Energy Behaviour in the Smart Grid Era , 2014, SMARTGREENS.

[41]  Goran Strbac,et al.  Measurement location for state estimation of distribution networks with generation , 2005 .

[42]  Birger Becker,et al.  Shifting electricity demand with smart home technologies - an experimental study on user acceptance , 2011 .

[43]  S. Karnouskos,et al.  Smart houses in the smart grid and the search for value-added services in the cloud of things era , 2013, 2013 IEEE International Conference on Industrial Technology (ICIT).

[44]  Johanna L. Mathieu,et al.  Quantifying Changes in Building Electricity Use, With Application to Demand Response , 2011, IEEE Transactions on Smart Grid.

[45]  S. Karnouskos,et al.  Communityware Smartgrid , 2011 .

[46]  Oleg Gulich,et al.  Technological and business challenges of smart grids , 2010 .

[47]  Pierre Pinson,et al.  Dynamic sizing of energy storage for hedging wind power forecast uncertainty , 2009, 2009 IEEE Power & Energy Society General Meeting.

[48]  Catherine Rosenberg,et al.  How internet concepts and technologies can help green and smarten the electrical grid , 2011, CCRV.

[49]  Dave Cliff,et al.  Less Than Human: Simple Adaptive Trading Agents for CDA Markets , 1998 .

[50]  Torben Bach Pedersen,et al.  Aggregating and Disaggregating Flexibility Objects , 2012, IEEE Transactions on Knowledge and Data Engineering.

[51]  Willett Kempton,et al.  Using fleets of electric-drive vehicles for grid support , 2007 .

[52]  Hasso Plattner,et al.  A common database approach for OLTP and OLAP using an in-memory column database , 2009, SIGMOD Conference.

[53]  Robert P. Broadwater,et al.  Distributed Energy Storage Control for Optimal Adoption of Solar Energy in Residential Networks , 2012 .

[54]  M. Medeiros,et al.  Modeling and forecasting short-term electricity load: A comparison of methods with an application to Brazilian data , 2008 .

[55]  Stamatis Karnouskos,et al.  Evaluation of the scalability of an energy market for Smart Grid neighborhoods , 2013, 2013 11th IEEE International Conference on Industrial Informatics (INDIN).

[56]  Ali Nourai,et al.  A vision & strategy for deployment of energy storage in electric utilities , 2010, IEEE PES General Meeting.

[57]  Lin Zhang,et al.  A control loop approach for integrating the future decentralized power markets and grids , 2013, 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm).

[58]  Stefanos V. Papaefthymiou,et al.  A Wind-Hydro-Pumped Storage Station Leading to High RES Penetration in the Autonomous Island System of Ikaria , 2010, IEEE Transactions on Sustainable Energy.

[59]  Joshua N. Cooper,et al.  DEHEMS: A user-driven domestic energy monitoring system , 2010, 2010 Internet of Things (IOT).

[60]  Cameron W. Potter,et al.  Building a smarter smart grid through better renewable energy information , 2009, 2009 IEEE/PES Power Systems Conference and Exposition.

[61]  Chuin-Shan Chen,et al.  Customer short term load forecasting by using ARIMA transfer function model , 1995, Proceedings 1995 International Conference on Energy Management and Power Delivery EMPD '95.

[62]  Stamatis Karnouskos,et al.  Assessment of an enterprise energy service platform in a Smart Grid city pilot , 2013, 2013 11th IEEE International Conference on Industrial Informatics (INDIN).

[63]  Martin L. Kersten,et al.  Breaking the memory wall in MonetDB , 2008, CACM.

[64]  Ali Nourai “Distributed Bulk Storage!“: The future of batteries in grid applications , 2011, 2011 IEEE Power and Energy Society General Meeting.

[65]  Wolfgang Lehner,et al.  SAP HANA database: data management for modern business applications , 2012, SGMD.

[66]  Stamatis Karnouskos,et al.  Performance Evaluation of a Web Service Enabled Smart Metering Platform , 2010, ICST E-Energy.

[67]  Stamatis Karnouskos Agent-based mediated control in smart grids , 2011, 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies.

[68]  Stamatis Karnouskos,et al.  The Impact of Smart Grid Prosumer Grouping on Forecasting Accuracy and Its Benefits for Local Electricity Market Trading , 2014, IEEE Transactions on Smart Grid.

[69]  Willett Kempton,et al.  Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy , 2005 .

[70]  Alfredo Tolón-Becerra,et al.  Proposal for territorial distribution of the EU 2020 political renewable energy goal , 2011 .

[71]  Stamatis Karnouskos,et al.  Towards the energy efficient future factory , 2009, 2009 7th IEEE International Conference on Industrial Informatics.

[72]  Fulli Gianluca,et al.  Smart Grid projects in Europe:Lessons learned and current developments 2012 update , 2013 .

[73]  J. G. Slootweg,et al.  Improving Short-term load forecasting for a local energy storage system , 2012, 2012 47th International Universities Power Engineering Conference (UPEC).

[74]  John D. Bullough,et al.  Review of the Safety Benefits and Other Effects of Roadway Lighting , 2009 .

[75]  J. K. Kok,et al.  Intelligence in Electricity Networks for Embedding Renewables and Distributed Generation , 2010 .

[76]  Keng Siau,et al.  Strategic implications of mobile technology: A case study using Value-Focused Thinking , 2005, J. Strateg. Inf. Syst..

[77]  Daniel J. Abadi,et al.  Column-stores vs. row-stores: how different are they really? , 2008, SIGMOD Conference.

[78]  Xinghuo Yu,et al.  The New Frontier of Smart Grids , 2011, IEEE Industrial Electronics Magazine.

[79]  Stamatis Karnouskos,et al.  Energy efficiency driven process analysis and optimization in discrete manufacturing , 2009, 2009 35th Annual Conference of IEEE Industrial Electronics.

[80]  Michael Beigl,et al.  Towards Collaborative Group Activity Recognition Using Mobile Devices , 2013, Mob. Networks Appl..

[81]  Stamatis Karnouskos,et al.  Addressing energy forecast errors: an empirical investigation of the capacity distribution impact in a variable storage , 2014 .

[82]  Sarvapali D. Ramchurn,et al.  Trading agents for the smart electricity grid , 2010, AAMAS.

[83]  Reynaldo Francisco Nuqui,et al.  State Estimation and Voltage Security Monitoring Using Synchronized Phasor Measurements , 2001 .

[84]  Subhashish Bhattacharya,et al.  Rule-Based Control of Battery Energy Storage for Dispatching Intermittent Renewable Sources , 2010, IEEE Transactions on Sustainable Energy.

[85]  C N Rasmussen Improving wind power quality with energy storage , 2009, 2009 IEEE PES/IAS Conference on Sustainable Alternative Energy (SAE).

[86]  Magnus Korpaas,et al.  Operation and sizing of energy storage for wind power plants in a market system , 2003 .

[87]  Keng Siau,et al.  The value of mobile applications: a utility company study , 2005, CACM.

[88]  Chris Rose,et al.  A Break in the Clouds: Towards a Cloud Definition , 2011 .

[89]  Yogesh L. Simmhan,et al.  Improving Energy Use Forecast for Campus Micro-grids Using Indirect Indicators , 2011, 2011 IEEE 11th International Conference on Data Mining Workshops.

[90]  Nicholas C. Zakas The Evolution of Web Development for Mobile Devices , 2013, ACM Queue.

[91]  Salman Kahrobaee,et al.  Multiagent study of smart grid customers with neighborhood electricity trading , 2014 .

[92]  Anand Kulkarni,et al.  Scalable real time data management for smart grid , 2011, Middleware '11.

[93]  E. J. Holmes,et al.  Electricity Distribution Network Design , 1989 .

[94]  Jianzhou Wang,et al.  A seasonal hybrid procedure for electricity demand forecasting in China , 2011 .

[95]  S. Bhattacharya,et al.  Control Strategies for Battery Energy Storage for Wind Farm Dispatching , 2009, IEEE Transactions on Energy Conversion.

[96]  W.T. Jewell,et al.  Analysis of the Cost per Kilowatt Hour to Store Electricity , 2008, IEEE Transactions on Energy Conversion.

[97]  Eric Teicholz Technology for facility managers : the impact of cutting-edge technology on facility management , 2013 .

[98]  Feng Chen,et al.  On-Line Voltage Stability Monitoring and Control (VSMC) System in Fujian power grid , 2007, 2007 IEEE Power Engineering Society General Meeting.

[99]  M. Hannus,et al.  ICT Roadmap for Energy-Efficient Buildings Research and Actions , 2013 .

[100]  E. Caamaño-Martín,et al.  Analysis of the Self-Consumption Possibilities in Small Grid-Connected Photovoltaic Systems in Spain , 2011 .

[101]  Michael D. Sohn,et al.  Uncertainty estimation improves energy measurement and verification procedures , 2014 .

[102]  Ram Rajagopal,et al.  Value of aggregation in smart grids , 2013, 2013 IEEE International Conference on Smart Grid Communications (SmartGridComm).

[103]  Ioannis Lampropoulos,et al.  A methodology for modeling the behavior of electricity prosumers within the smart grid , 2010, 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe).

[104]  Steffen Lamparter,et al.  An agent-based market platform for Smart Grids , 2010, AAMAS.

[105]  Stamatis Karnouskos,et al.  The cooperative Internet of Things enabled Smart Grid , 2010 .

[106]  Ramachandra Kota,et al.  Cooperatives of distributed energy resources for efficient virtual power plants , 2011, AAMAS.

[107]  Stamatis Karnouskos,et al.  A comparative analysis of smart metering data aggregation performance , 2013, 2013 11th IEEE International Conference on Industrial Informatics (INDIN).

[108]  Stamatis Karnouskos,et al.  Demand Side Management via prosumer interactions in a smart city energy marketplace , 2011, 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies.

[109]  F. Genoese,et al.  Assessing the value of storage in a future energy system with a high share of renewable electricity generation , 2014 .

[110]  Edward Curry,et al.  Linking building data in the cloud: Integrating cross-domain building data using linked data , 2013, Adv. Eng. Informatics.

[111]  Wolfgang Lehner,et al.  Efficient transaction processing in SAP HANA database: the end of a column store myth , 2012, SIGMOD Conference.

[112]  Stamatis Karnouskos,et al.  Using a 6LoWPAN smart meter mesh network for event-driven monitoring of power quality , 2012, 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm).

[113]  G. Sanchez,et al.  Direct Load Control Decision Model for Aggregated EV Charging Points , 2012, IEEE Transactions on Power Systems.

[114]  Frede Hvelplund Renewable energy and the need for local energy markets , 2006 .

[115]  Mo-Yuen Chow,et al.  A Survey on the Electrification of Transportation in a Smart Grid Environment , 2012, IEEE Transactions on Industrial Informatics.

[116]  Stamatis Karnouskos,et al.  Energy services for the smart grid city , 2012, 2012 6th IEEE International Conference on Digital Ecosystems and Technologies (DEST).

[117]  T. Kaipia,et al.  New Investment Strategies in the Modern Electricity Distribution Business - Reliability in the Long-Term Planning , 2007, 2007 IEEE Power Engineering Society General Meeting.

[118]  Stamatis Karnouskos,et al.  Towards an information infrastructure for the future Internet of energy , 2007 .

[119]  Dirk Timmermann,et al.  Encoding and Compression for the Devices Profile for Web Services , 2010, 2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops.

[120]  Sarah C. Darby,et al.  Conditions of energy efficient behaviour—a comparative study between Sweden and the UK , 2011 .

[121]  James W. Taylor,et al.  Triple seasonal methods for short-term electricity demand forecasting , 2010, Eur. J. Oper. Res..