FPT algorithms for Connected Feedback Vertex Set

We study the recently introduced Connected Feedback Vertex Set (CFVS) problem from the view-point of parameterized algorithms. CFVS is the connected variant of the classical Feedback Vertex Set problem and is defined as follows: given a graph G=(V,E) and an integer k, decide whether there exists F⊆V, |F|≤k, such that G[V∖F] is a forest and G[F] is connected.We show that Connected Feedback Vertex Set can be solved in time O(2O(k)nO(1)) on general graphs and in time $O(2^{O(\sqrt{k}\log k)}n^{O(1)})$ on graphs excluding a fixed graph H as a minor. Our result on general undirected graphs uses, as a subroutine, a parameterized algorithm for Group Steiner Tree, a well studied variant of Steiner Tree. We find the algorithm for Group Steiner Tree of independent interest and believe that it could be useful for obtaining parameterized algorithms for other connectivity problems.

[1]  Stefan Richter,et al.  Enumerate and Expand: Improved Algorithms for Connected Vertex Cover and Tree Cover , 2006, CSR.

[2]  Fabrizio Grandoni,et al.  Solving Connected Dominating Set Faster than 2 n , 2006, Algorithmica.

[3]  Samir Khuller,et al.  Approximation Algorithms for Connected Dominating Sets , 1996, Algorithmica.

[4]  Jesper Nederlof Fast Polynomial-Space Algorithms Using Möbius Inversion: Improving on Steiner Tree and Related Problems , 2009, ICALP.

[5]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[6]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[7]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[8]  Rolf Niedermeier,et al.  Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..

[9]  Shan Wang,et al.  Finding Top-k Min-Cost Connected Trees in Databases , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[10]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.

[11]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[12]  Saket Saurabh,et al.  Linear Kernel for Planar Connected Dominating Set , 2009, TAMC.

[13]  Panos M. Pardalos,et al.  Feedback Set Problems , 1999, Handbook of Combinatorial Optimization.

[14]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[15]  Jaroslav Nesetril,et al.  Graphs and homomorphisms , 2004, Oxford lecture series in mathematics and its applications.

[16]  Erik D. Demaine,et al.  Linearity of grid minors in treewidth with applications through bidimensionality , 2008, Comb..

[17]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2007, J. Comput. Syst. Sci..

[18]  Alexander Grigoriev,et al.  Connected Feedback Vertex Set in Planar Graphs , 2009, WG.

[19]  Alex Zelikovsky,et al.  Tighter Bounds for Graph Steiner Tree Approximation , 2005, SIAM J. Discret. Math..

[20]  Jianer Chen,et al.  On Feedback Vertex Set: New Measure and New Structures , 2010, Algorithmica.

[21]  Rolf Niedermeier,et al.  Parameterized Complexity of Vertex Cover Variants , 2007, Theory of Computing Systems.

[22]  L. Lovász Graph minor theory , 2005 .

[23]  Toshihiro Fujito,et al.  A 2-approximation NC algorithm for connected vertex cover and tree cover , 2004, Inf. Process. Lett..

[24]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, COCOON.

[25]  Hans L. Bodlaender,et al.  On Disjoint Cycles , 1991, Int. J. Found. Comput. Sci..

[26]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[27]  A.V. Kovalyov An O , 1995, Proceedings of Tenth International Symposium on Intelligent Control.

[28]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[29]  Samir Khuller,et al.  Improved Methods for Approximating Node Weighted Steiner Trees and Connected Dominating Sets , 1998, FSTTCS.

[30]  Stefan Richter,et al.  Enumerate and Expand: Improved Algorithms for Connected Vertex Cover and Tree Cover , 2006, Theory of Computing Systems.

[31]  Michael R. Fellows,et al.  On Problems without Polynomial Kernels (Extended Abstract) , 2008, ICALP.

[32]  F. Hwang,et al.  The Steiner Tree Problem , 2012 .

[33]  Noga Alon,et al.  Algorithmic construction of sets for k-restrictions , 2006, TALG.

[34]  Saket Saurabh,et al.  Incompressibility through Colors and IDs , 2009, ICALP.

[35]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[36]  R. Ravi,et al.  A polylogarithmic approximation algorithm for the group Steiner tree problem , 2000, SODA '98.

[37]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[38]  Jérôme Monnot,et al.  Complexity and Approximation Results for the Connected Vertex Cover Problem , 2007, WG.

[39]  Rolf Niedermeier,et al.  Exact Algorithms for Generalizations of Vertex Cover , 2005 .

[40]  Ken-ichi Kawarabayashi,et al.  Algorithmic graph minor theory: Decomposition, approximation, and coloring , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[41]  Stéphan Thomassé A quadratic kernel for feedback vertex set , 2009, SODA.

[42]  Saket Saurabh,et al.  Faster fixed parameter tractable algorithms for finding feedback vertex sets , 2006, TALG.