The capacitated minimum spanning tree problem

In this thesis we focus on the Capacitated Minimum Spanning Tree (CMST), an extension of the minimum spanning tree (MST) which considers a central or root vertex which receives and sends commodities (information, goods, etc) to a group of terminals. Such commodities flow through links which have capacities that limit the total flow they can accommodate. These capacity constraints over the links result of interest because in many applications the capacity limits are inherent. We find the applications of the CMST in the same areas as the applications of the MST; telecommunications network design, facility location planning, and vehicle routing. The CMST arises in telecommunications networks design when the presence of a central server is compulsory and the flow of information is limited by the capacity of either the server or the connection lines. Its study also results specially interesting in the context of the vehicle routing problem, due to the utility that spanning trees can have in constructive methods. By the simple fact of adding capacity constraints to the MST problem we move from a polynomially solvable problem to a non-polynomial one. In the first chapter we describe and define the problem, introduce some notation, and present a review of the existing literature. In such review we include formulations and exact methods as well as the most relevant heuristic approaches. In the second chapter two basic formulations and the most used valid inequalities are presented. In the third chapter we present two new formulations for the CMST which are based on the identification of subroots (vertices directly connected to the root). One way of characterizing CMST solutions is by identifying the subroots and the vertices assigned to them. Both formulations use binary decision variables y to identify the subroots. Additional decision variables x are used to represent the elements (arcs) of the tree. In the second formulation the set of x variables is extended to indicate the depth of the arcs in the tree. For each formulation we present families of valid inequalities and address the separation problem in each case. Also a solution algorithm is proposed. In the fourth chapter we present a biased random-key genetic algorithm (BRKGA) for the CMST. BRKGA is a population-based metaheuristic, that has been used for combinatorial optimization. Decoders, solution representation and exploring strategies are presented and discussed. A final algorithm to obtain upper bounds for the CMST is proposed. Numerical results for the BRKGA and two cutting plane algorithms based on the new formulations are presented in the fifth chapter . The above mentioned results are discussed and analyzed in this same chapter. The conclusion of this thesis are presented in the last chapter, in which we include the opportunity areas suitable for future research.