Canonical Nondeterministic Automata

For each regular language \(L\) we describe a family of canonical nondeterministic acceptors (nfas). Their construction follows a uniform recipe: build the minimal dfa for \(L\) in a locally finite variety \(\mathcal {V}\), and apply an equivalence between the finite \(\mathcal {V}\)-algebras and a category of finite structured sets and relations. By instantiating this to different varieties we recover three well-studied canonical nfas (the atomaton, the jiromaton and the minimal xor automaton) and obtain a new canonical nfa called the distromaton. We prove that each of these nfas is minimal relative to a suitable measure, and give conditions for state-minimality. Our approach is coalgebraic, exhibiting additional structure and universal properties.

[1]  Alexandra Silva,et al.  Sound and Complete Axiomatizations of Coalgebraic Language Equivalence , 2011, TOCL.

[2]  Ana Sokolova,et al.  Generic Trace Semantics via Coinduction , 2007, Log. Methods Comput. Sci..

[3]  Grzegorz Rozenberg,et al.  Developments in Language Theory II , 2002 .

[4]  Nicolas Gama,et al.  Efficient Equivalence and Minimization for Non Deterministic Xor Automata , 2010 .

[5]  Stefan Milius A Sound and Complete Calculus for Finite Stream Circuits , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[6]  Jirí Adámek,et al.  Iterative algebras at work , 2006, Mathematical Structures in Computer Science.

[7]  Janusz A. Brzozowski,et al.  Theory of Átomata , 2011, Developments in Language Theory.

[8]  Michael Hauhs,et al.  Algebrais-Coalgebraic recursion theory of histroy-dependent dynamical system models , 2014 .

[9]  Jacques Sakarovitch,et al.  The universal automaton , 2008, Logic and Automata.

[10]  Alexandra Silva,et al.  Logic and Program Semantics , 2012, Lecture Notes in Computer Science.

[11]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[12]  Alexandra Silva,et al.  A Coalgebraic Perspective on Minimization and Determinization , 2012, FoSSaCS.

[13]  Jirí Adámek,et al.  Well-Pointed Coalgebras (Extended Abstract) , 2012, FoSSaCS.

[14]  Alexandra Silva,et al.  Generalizing determinization from automata to coalgebras , 2013, Log. Methods Comput. Sci..

[15]  J. M. Foster,et al.  Mathematical theory of automata , 1965 .

[16]  J. Brzozowski Canonical regular expressions and minimal state graphs for definite events , 1962 .

[17]  Prakash Panangaden,et al.  Minimization via Duality , 2012, WoLLIC.

[18]  Alexandra Silva,et al.  Trace semantics via determinization , 2015, J. Comput. Syst. Sci..

[19]  Alan Bundy,et al.  Towards Ontology Evolution in Physics , 2008, WoLLIC.

[20]  Aurélien Lemay,et al.  Residual Finite State Automata , 2002, Fundam. Informaticae.

[21]  Alexandra Silva,et al.  A coalgebraic perspective on linear weighted automata , 2011, Inf. Comput..

[22]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[23]  Peter Jipsen,et al.  Relational and algebraic methods in computer science , 2016, J. Log. Algebraic Methods Program..

[24]  Peter Jipsen,et al.  Categories of Algebraic Contexts Equivalent to Idempotent Semirings and Domain Semirings , 2012, RAMiCS.

[25]  Alexandra Silva,et al.  Brzozowski's Algorithm (Co)Algebraically , 2011, Logic and Program Semantics.