Canonical Nondeterministic Automata
暂无分享,去创建一个
[1] Alexandra Silva,et al. Sound and Complete Axiomatizations of Coalgebraic Language Equivalence , 2011, TOCL.
[2] Ana Sokolova,et al. Generic Trace Semantics via Coinduction , 2007, Log. Methods Comput. Sci..
[3] Grzegorz Rozenberg,et al. Developments in Language Theory II , 2002 .
[4] Nicolas Gama,et al. Efficient Equivalence and Minimization for Non Deterministic Xor Automata , 2010 .
[5] Stefan Milius. A Sound and Complete Calculus for Finite Stream Circuits , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.
[6] Jirí Adámek,et al. Iterative algebras at work , 2006, Mathematical Structures in Computer Science.
[7] Janusz A. Brzozowski,et al. Theory of Átomata , 2011, Developments in Language Theory.
[8] Michael Hauhs,et al. Algebrais-Coalgebraic recursion theory of histroy-dependent dynamical system models , 2014 .
[9] Jacques Sakarovitch,et al. The universal automaton , 2008, Logic and Automata.
[10] Alexandra Silva,et al. Logic and Program Semantics , 2012, Lecture Notes in Computer Science.
[11] Ian Stark,et al. Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.
[12] Alexandra Silva,et al. A Coalgebraic Perspective on Minimization and Determinization , 2012, FoSSaCS.
[13] Jirí Adámek,et al. Well-Pointed Coalgebras (Extended Abstract) , 2012, FoSSaCS.
[14] Alexandra Silva,et al. Generalizing determinization from automata to coalgebras , 2013, Log. Methods Comput. Sci..
[15] J. M. Foster,et al. Mathematical theory of automata , 1965 .
[16] J. Brzozowski. Canonical regular expressions and minimal state graphs for definite events , 1962 .
[17] Prakash Panangaden,et al. Minimization via Duality , 2012, WoLLIC.
[18] Alexandra Silva,et al. Trace semantics via determinization , 2015, J. Comput. Syst. Sci..
[19] Alan Bundy,et al. Towards Ontology Evolution in Physics , 2008, WoLLIC.
[20] Aurélien Lemay,et al. Residual Finite State Automata , 2002, Fundam. Informaticae.
[21] Alexandra Silva,et al. A coalgebraic perspective on linear weighted automata , 2011, Inf. Comput..
[22] Michael Barr,et al. Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..
[23] Peter Jipsen,et al. Relational and algebraic methods in computer science , 2016, J. Log. Algebraic Methods Program..
[24] Peter Jipsen,et al. Categories of Algebraic Contexts Equivalent to Idempotent Semirings and Domain Semirings , 2012, RAMiCS.
[25] Alexandra Silva,et al. Brzozowski's Algorithm (Co)Algebraically , 2011, Logic and Program Semantics.