Cooperative Cuts: Graph Cuts with Submodular Edge Weights

We introduce a problem we call Cooperative cut, where the goal is to find a minimum-cost graph cut but where a submodular function is used to define the cost of a subsets of edges. That means, the cost of an edge that is added to the current cut set C depends on the edges in C. This generalization of the cost in the standard min-cut problem to a submodular cost function immediately makes the problem harder. Not only do we prove NP hardness even for nonnegative submodular costs, but also show a lower bound of Ω(|V |) on the approximation factor for the problem. On the positive side, we propose and compare four approximation algorithms with an overall approximation factor of min { |V |/2, |C∗|, O( √ |E| log |V |), |Pmax| } , where C∗ is the optimal solution, and Pmax is the longest s, t path across the cut between given s, t. We also introduce additional heuristics for the problem which have attractive properties from the perspective of practical applications and implementations in that existing fast min-cut libraries may be used as subroutines. Both our approximation algorithms, and our heuristics, appear to do well in practice.

[1]  T. C. Hu,et al.  Multi-Terminal Network Flows , 1961 .

[2]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[3]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[4]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[5]  E. L. Lawler,et al.  Computing Maximal "Polymatroidal" Network Flows , 1982, Math. Oper. Res..

[6]  Martin Grötschel,et al.  Mathematical Programming The State of the Art, XIth International Symposium on Mathematical Programming, Bonn, Germany, August 23-27, 1982 , 1983, ISMP.

[7]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[8]  Dorit S. Hochbaum,et al.  Polynomial algorithm for the k-cut problem , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[9]  Yoshiko Wakabayashi,et al.  A cutting plane algorithm for a clustering problem , 1989, Math. Program..

[10]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[11]  Mihalis Yannakakis,et al.  The complexity of multiway cuts (extended abstract) , 1992, STOC '92.

[12]  Dorothea Wagner,et al.  Between Min Cut and Graph Bisection , 1993, MFCS.

[13]  Dorit S. Hochbaum,et al.  The bottleneck graph partition problem , 1996, Networks.

[14]  Michel Deza,et al.  Geometry of cuts and metrics , 2009, Algorithms and combinatorics.

[15]  H. Narayanan Submodular functions and electrical networks , 1997 .

[16]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[17]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[18]  Maurice Queyranne,et al.  Minimizing symmetric submodular functions , 1998, Math. Program..

[19]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[20]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[21]  Jeff A. Bilmes,et al.  On Triangulating Dynamic Graphical Models , 2002, UAI.

[22]  Roded Sharan,et al.  Cluster graph modification problems , 2002, Discret. Appl. Math..

[23]  Subhash Khot,et al.  Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[24]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[26]  Toshihide Ibaraki,et al.  Greedy splitting algorithms for approximating multiway partition problems , 2005, Math. Program..

[27]  Venkatesan Guruswami,et al.  Correlation clustering with a fixed number of clusters , 2005, SODA '06.

[28]  Amos Fiat,et al.  Correlation clustering in general weighted graphs , 2006, Theor. Comput. Sci..

[29]  Jens Vygen,et al.  The Book Review Column1 , 2020, SIGACT News.

[30]  Fabián A. Chudak,et al.  Efficient solutions to relaxations of combinatorial problems with submodular penalties via the Lovász extension and non-smooth convex optimization , 2007, SODA '07.

[31]  Refael Hassin,et al.  The Complexity of Bottleneck Labeled Graph Problems , 2007, Algorithmica.

[32]  Lisa Fleischer,et al.  Submodular Approximation: Sampling-based Algorithms and Lower Bounds , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[33]  Ulrik Brandes,et al.  On Modularity Clustering , 2008, IEEE Transactions on Knowledge and Data Engineering.

[34]  Jan Vondrák,et al.  Symmetry and Approximability of Submodular Maximization Problems , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[35]  Gagan Goel,et al.  Approximability of Combinatorial Problems with Multi-agent Submodular Cost Functions , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[36]  Sebastian Nowozin,et al.  Solution stability in linear programming relaxations: graph partitioning and unsupervised learning , 2009, ICML '09.

[37]  Satoru Iwata,et al.  Submodular Function Minimization under Covering Constraints , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[38]  Vahab S. Mirrokni,et al.  Approximating submodular functions everywhere , 2009, SODA.

[39]  James B. Orlin,et al.  A faster strongly polynomial time algorithm for submodular function minimization , 2007, Math. Program..

[40]  Gagan Goel,et al.  Optimal Approximation Algorithms for Multi-agent Combinatorial Problems with Discounted Price Functions , 2009, ArXiv.

[41]  Francesco Maffioli,et al.  Minimum cut bases in undirected networks , 2010, Discret. Appl. Math..

[42]  Andreas Krause,et al.  SFO: A Toolbox for Submodular Function Optimization , 2010, J. Mach. Learn. Res..

[43]  Anthony Wirth,et al.  Correlation Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[44]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[45]  Jin-Yi Cai,et al.  Approximation and hardness results for label cut and related problems , 2009, J. Comb. Optim..