A discrete variant of Farkas' Lemma

We report a discrete variant of Farkas Lemma in the setting of a module over a linearly ordered commutative ring. The ring may contain zero divisors, and need not be associative nor unital, but we need a certain hypothesis about the ring. Finally, we discuss the result and compare it with other related results found in the literature.

[1]  J. Farkas Theorie der einfachen Ungleichungen. , 1902 .

[2]  Th. Motzkin Beiträge zur Theorie der linearen Ungleichungen , 1936 .

[3]  B. Mordukhovich Comments on: Farkas’ lemma: three decades of generalizations for mathematical optimization , 2014 .

[4]  Vaithilingam Jeyakumar,et al.  Farkas’ lemma: three decades of generalizations for mathematical optimization , 2014 .

[5]  Ramaswamy Chandrasekaran,et al.  Integer Farkas Lemma , 2015, IGTR.

[6]  Marco A. López Comments on: Farkas’ lemma: three decades of generalizations for mathematical optimization , 2014 .

[7]  Stanley Zionts,et al.  Technical Note - Solving Integer Programming Problems by Aggregating Constraints , 1977, Oper. Res..

[8]  David Bartl,et al.  A Short Algebraic Proof of the Farkas Lemma , 2008, SIAM J. Optim..

[10]  Jean B. Lasserre,et al.  The Integer Hull of a Convex Rational Polytope , 2003, ICCSA.

[11]  David Bartl A note on the short algebraic proof of Farkas' Lemma , 2012 .

[12]  Nonnegative solvability of linear equations in certain ordered rings , 2006 .

[13]  K. Ng,et al.  Comments on: Farkas’ lemma: three decades of generalizations for mathematical optimization , 2014 .

[14]  Jean B. Lasserre A discrete Farkas lemma , 2004, Discret. Optim..

[15]  David Bartl,et al.  Farkas' Lemma, other theorems of the alternative, and linear programming in infinite-dimensional spaces: a purely linear-algebraic approach , 2007 .

[16]  C. G. Broyden A simple algebraic proof of Farkas's lemma and related theorems , 1998 .

[17]  David Bartl A very short algebraic proof of the Farkas Lemma , 2012, Math. Methods Oper. Res..

[18]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[19]  R. A. Good Systems of Linear Relations , 1959 .