Fitting Multilevel Vector Autoregressive Models in Stan, JAGS, and Mplus

The influx of intensive longitudinal data creates a pressing need for complex modeling tools that help enrich our understanding of how individuals change over time. Multilevel vector autoregressive...

[1]  Z. Oravecz,et al.  Fitting growth curve models in the Bayesian framework , 2018, Psychonomic bulletin & review.

[2]  Florian Huber,et al.  Adaptive Shrinkage in Bayesian Vector Autoregressive Models , 2019 .

[3]  M. Strube,et al.  Independence Revisited: The Relation between Positive and Negative Affect in a Naturalistic Setting , 1994 .

[4]  Francis Tuerlinckx,et al.  A hierarchical latent stochastic differential equation model for affective dynamics. , 2011, Psychological methods.

[5]  L. Clark,et al.  Extraversion and Its Positive Emotional Core , 1997 .

[6]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[7]  Christian Robert,et al.  Statistical Rethinking , 2017 .

[8]  Emilio Ferrer,et al.  How to compare cross-lagged associations in a multilevel autoregressive model. , 2016, Psychological methods.

[9]  Matthew J. Denwood,et al.  runjags: An R Package Providing Interface Utilities, Model Templates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS , 2016 .

[10]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[11]  Zhiyong Zhang,et al.  Bayesian Estimation of Categorical Dynamic Factor Models , 2007 .

[12]  Xin-Yuan Song,et al.  Evaluation of the Bayesian and Maximum Likelihood Approaches in Analyzing Structural Equation Models with Small Sample Sizes , 2004, Multivariate behavioral research.

[13]  M. Candel Performance of empirical Bayes estimators of random coefficients in multilevel analysis: Some results for the random intercept‐only model , 2004 .

[14]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[15]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[16]  Boris Egloff,et al.  The independence of positive and negative affect depends on the affect measure , 1998 .

[17]  Stef van Buuren,et al.  Multiple imputation of discrete and continuous data by fully conditional specification , 2007 .

[18]  B. Muthén,et al.  Growth modeling with nonignorable dropout: alternative analyses of the STAR*D antidepressant trial. , 2011, Psychological methods.

[19]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[20]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[21]  Stephanie T. Lane,et al.  Focusing Personality Assessment on the Person: Modeling General, Shared, and Person Specific Processes in Personality and Psychopathology , 2019, Psychological assessment.

[22]  P. Costa,et al.  Facet Scales for Agreeableness and Conscientiousness: A Revision of the NEO Personality Inventory☆ , 1991 .

[23]  Richard E. Lucas,et al.  Explaining the extraversion/positive affect relation: sociability cannot account for extraverts' greater happiness. , 2008, Journal of personality.

[24]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[25]  Fabio Canova,et al.  Methods for Applied Macroeconomic Research , 2007 .

[26]  M. Kenward,et al.  Informative Drop‐Out in Longitudinal Data Analysis , 1994 .

[27]  P. Kuppens,et al.  Emotional Inertia and Psychological Maladjustment , 2010, Psychological science.

[28]  Hongtu Zhu,et al.  Bayesian estimation of semiparametric nonlinear dynamic factor analysis models using the Dirichlet process prior. , 2011, The British journal of mathematical and statistical psychology.

[29]  John Van Hoewyk,et al.  A multivariate technique for multiply imputing missing values using a sequence of regression models , 2001 .

[30]  D. Watson,et al.  Development and validation of brief measures of positive and negative affect: the PANAS scales. , 1988, Journal of personality and social psychology.

[31]  Michael W Browne,et al.  Structural Equation Modeling of Multivariate Time Series , 2007, Multivariate behavioral research.

[32]  A. Rotnitzky,et al.  Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis by DANIELS, M. J. and HOGAN, J. W , 2009 .

[33]  Zhiyong Zhang,et al.  Analyzing Multiple Multivariate Time Series Data Using Multilevel Dynamic Factor Models , 2014, Multivariate behavioral research.

[34]  James T. Thorson,et al.  Faster estimation of Bayesian models in ecology using Hamiltonian Monte Carlo , 2017 .

[35]  Tom A. B. Snijders,et al.  Multilevel Analysis , 2011, International Encyclopedia of Statistical Science.

[36]  Helmut Ltkepohl,et al.  New Introduction to Multiple Time Series Analysis , 2007 .

[37]  E L Hamaker,et al.  A Comparison of Inverse-Wishart Prior Specifications for Covariance Matrices in Multilevel Autoregressive Models , 2016, Multivariate behavioral research.

[38]  Joseph G. Ibrahim,et al.  A conditional model for incomplete covariates in parametric regression models , 1996 .

[39]  P. Kuppens,et al.  Getting stuck in depression: The roles of rumination and emotional inertia , 2012, Cognition & emotion.

[40]  Sacha Epskamp,et al.  The Gaussian Graphical Model in Cross-Sectional and Time-Series Data , 2016, Multivariate behavioral research.

[41]  Francis Tuerlinckx,et al.  Modeling Nonstationary Emotion Dynamics in Dyads using a Time-Varying Vector-Autoregressive Model , 2018, Multivariate behavioral research.

[42]  Kathleen M. Gates,et al.  Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples , 2012, NeuroImage.

[43]  D. Rubin,et al.  Fully conditional specification in multivariate imputation , 2006 .

[44]  D. Watson Intraindividual and interindividual analyses of positive and negative affect: their relation to health complaints, perceived stress, and daily activities. , 1988, Journal of personality and social psychology.

[45]  Francis Tuerlinckx,et al.  Bayesian Data Analysis with the Bivariate Hierarchical Ornstein-Uhlenbeck Process Model , 2016, Multivariate behavioral research.

[46]  T. Kamarck,et al.  A global measure of perceived stress. , 1983, Journal of health and social behavior.

[47]  D. Hedeker,et al.  Modeling mood variation associated with smoking: an application of a heterogeneous mixed-effects model for analysis of ecological momentary assessment (EMA) data. , 2009, Addiction.

[48]  P. Kuppens,et al.  Emotional inertia contributes to depressive symptoms beyond perseverative thinking , 2015, Cognition & emotion.

[49]  Joseph G. Ibrahim,et al.  Bayesian Sensitivity Analysis of a Nonlinear Dynamic Factor Analysis Model with Nonparametric Prior and Possible Nonignorable Missingness , 2017, Psychometrika.

[50]  Bengt Muthén,et al.  Dynamic Structural Equation Models , 2018 .

[51]  Zita Oravecz,et al.  A Bayesian Vector Autoregressive Model with Nonignorable Missingness in Dependent Variables and Covariates: Development, Evaluation, and Application to Family Processes , 2020, Structural equation modeling : a multidisciplinary journal.

[52]  SY-MIIN CHOW,et al.  Nonlinear Regime-Switching State-Space (RSSS) Models , 2013, Psychometrika.

[53]  R. Stawski,et al.  Interindividual Differences and Intraindividual Variability in the Cortisol Awakening Response: an Examination of Age and Gender Intraindividual Variability in the Car , 2009 .

[54]  E. Diener,et al.  The independence of positive and negative affect. , 1984, Journal of personality and social psychology.

[55]  Sy-Miin Chow,et al.  Dynamic infant-parent affect coupling during the face-to-face/still-face. , 2010, Emotion.

[56]  D. Borsboom,et al.  A Network Approach to Psychopathology: New Insights into Clinical Longitudinal Data , 2013, PloS one.

[57]  Joachim Vandekerckhove,et al.  Extending JAGS: A tutorial on adding custom distributions to JAGS (with a diffusion model example) , 2013, Behavior Research Methods.

[58]  E. Hamaker,et al.  Investigating inter-individual differences in short-term intra-individual variability. , 2012, Psychological methods.

[59]  E L Hamaker,et al.  At the Frontiers of Modeling Intensive Longitudinal Data: Dynamic Structural Equation Models for the Affective Measurements from the COGITO Study , 2018, Multivariate behavioral research.

[60]  Joshua F. Wiley,et al.  MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus , 2018, Structural equation modeling : a multidisciplinary journal.

[61]  Dorota Kurowicka,et al.  Generating random correlation matrices based on vines and extended onion method , 2009, J. Multivar. Anal..

[62]  Joshua J. Jackson,et al.  Consistency and change in idiographic personality: A longitudinal ESM network study. , 2020, Journal of personality and social psychology.