Isogeometric boundary element analysis using unstructured T-splines

[1]  Yuri Bazilevs,et al.  Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines , 2012 .

[2]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[3]  T. Hughes,et al.  Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .

[4]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[5]  Cv Clemens Verhoosel,et al.  A phase-field description of dynamic brittle fracture , 2012 .

[6]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[7]  T. Rabczuk,et al.  A two-dimensional Isogeometric Boundary Element Method for elastostatic analysis , 2012 .

[8]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[9]  Bert Jüttler,et al.  Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis , 2011 .

[10]  Kang Li,et al.  Isogeometric analysis and shape optimization via boundary integral , 2011, Comput. Aided Des..

[11]  T. Hughes,et al.  Converting an unstructured quadrilateral mesh to a standard T-spline surface , 2011 .

[12]  Michael A. Scott,et al.  T-splines as a design-through-analysis technology , 2011 .

[13]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[14]  Thomas J. R. Hughes,et al.  An isogeometric approach to cohesive zone modeling , 2011 .

[15]  G. Sangalli,et al.  IsoGeometric analysis using T-splines on two-patch geometries , 2011 .

[16]  Thomas J. R. Hughes,et al.  An isogeometric analysis approach to gradient damage models , 2011 .

[17]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[18]  Michael J. Borden,et al.  Isogeometric finite element data structures based on Bézier extraction of T‐splines , 2010 .

[19]  Carla Manni,et al.  Quasi-interpolation in isogeometric analysis based on generalized B-splines , 2010, Comput. Aided Geom. Des..

[20]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[21]  Zafer Gürdal,et al.  On the variational formulation of stress constraints in isogeometric design , 2010 .

[22]  T. Belytschko,et al.  A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM , 2010 .

[23]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[24]  Bernd Hamann,et al.  Iso‐geometric Finite Element Analysis Based on Catmull‐Clark : ubdivision Solids , 2010, Comput. Graph. Forum.

[25]  Xiaoping Qian,et al.  Full analytical sensitivities in NURBS based isogeometric shape optimization , 2010 .

[26]  T. Hughes,et al.  Isogeometric analysis of the isothermal Navier-Stokes-Korteweg equations , 2010 .

[27]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[28]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[29]  G. Sangalli,et al.  Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .

[30]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[31]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[32]  Yongjie Zhang,et al.  Wavelets-based NURBS simplification and fairing , 2010 .

[33]  Manfred Bischoff,et al.  Numerical efficiency, locking and unlocking of NURBS finite elements , 2010 .

[34]  F. Auricchio,et al.  The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations , 2010 .

[35]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[36]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[37]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[38]  Tom Lyche,et al.  Analysis-aware modeling: Understanding quality considerations in modeling for isogeometric analysis , 2010 .

[39]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[40]  Panagiotis D. Kaklis,et al.  An isogeometric BEM for exterior potential-flow problems in the plane , 2009, Symposium on Solid and Physical Modeling.

[41]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[42]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[43]  Martin Aigner,et al.  Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.

[44]  Hyun-Jung Kim,et al.  Isogeometric analysis for trimmed CAD surfaces , 2009 .

[45]  Neil A. Dodgson,et al.  NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes , 2009, ACM Trans. Graph..

[46]  Jia Lu,et al.  Circular element: Isogeometric elements of smooth boundary , 2009 .

[47]  Zafer Gürdal,et al.  Isogeometric sizing and shape optimisation of beam structures , 2009 .

[48]  Thomas J. R. Hughes,et al.  n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .

[49]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[50]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[51]  Hongwei Lin,et al.  Watertight trimmed NURBS , 2008, ACM Trans. Graph..

[52]  Charles T. Loop,et al.  G2 Tensor Product Splines over Extraordinary Vertices , 2008, Comput. Graph. Forum.

[53]  Elaine Cohen,et al.  Volumetric parameterization and trivariate b-spline fitting using harmonic functions , 2008, SPM '08.

[54]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[55]  T. Hughes,et al.  B¯ and F¯ projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements , 2008 .

[56]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[57]  Charles T. Loop,et al.  Approximating Catmull-Clark subdivision surfaces with bicubic patches , 2008, TOGS.

[58]  Hui Xiong,et al.  Visual Continuity , 2008, Encyclopedia of GIS.

[59]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[60]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[61]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[62]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[63]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[64]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[65]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[66]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[67]  Jon Trevelyan,et al.  Evolutionary structural optimisation based on boundary representation of NURBS. Part I: 2D algorithms , 2005 .

[68]  Michael Ortiz,et al.  A cohesive approach to thin-shell fracture and fragmentation , 2005 .

[69]  David Elliott,et al.  A sinh transformation for evaluating nearly singular boundary element integrals , 2005 .

[70]  Heather Ipson,et al.  T-spline Merging , 2005 .

[71]  Malcolm Sabin,et al.  Recent Progress in Subdivision: a Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[72]  Fengshan Liu,et al.  Reconstruction of convergent G1 smooth B-spline surfaces , 2004, Comput. Aided Geom. Des..

[73]  Tom Lyche,et al.  T-spline simplification and local refinement , 2004, ACM Trans. Graph..

[74]  Charles T. Loop Second order smoothness over extraordinary vertices , 2004, SGP '04.

[75]  Thomas W. Sederberg,et al.  Knot intervals and multi-degree splines , 2003, Comput. Aided Geom. Des..

[76]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[77]  Peter Schröder,et al.  Integrated modeling, finite-element analysis, and engineering design for thin-shell structures using subdivision , 2002, Comput. Aided Des..

[78]  M. H. Aliabadi,et al.  Applications in solids and structures , 2002 .

[79]  Michael Ortiz,et al.  Fully C1‐conforming subdivision elements for finite deformation thin‐shell analysis , 2001, International Journal for Numerical Methods in Engineering.

[80]  Ulrich Reif,et al.  Curvature integrability of subdivision surfaces , 2001, Adv. Comput. Math..

[81]  Jörg Peters,et al.  Patching Catmull-Clark meshes , 2000, SIGGRAPH.

[82]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[83]  Y. Liu On the simple-solution method and non-singular nature of the BIE / BEM Ð a review and some new results , 2000 .

[84]  Malcolm A. Sabin,et al.  Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.

[85]  Jos Stam,et al.  Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.

[86]  Malcolm A. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1998 .

[87]  P. Juhl A NOTE ON THE CONVERGENCE OF THE DIRECT COLLOCATION BOUNDARY ELEMENT METHOD , 1998 .

[88]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[89]  J. Navarro-Pedreño Numerical Methods for Least Squares Problems , 1996 .

[90]  M. H. Aliabadi,et al.  Out-of-core solver for large, multi-zone boundary element matrices , 1995 .

[91]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[92]  Marc S. Ingber,et al.  A comparison of the semidiscontinuous element and multiple node with auxiliary boundary collocation approaches for the boundary element method , 1995 .

[93]  V. Mantič A new formula for the C-matrix in the Somigliana identity , 1993 .

[94]  T. Cruse,et al.  Some notes on singular integral techniques in boundary element analysis , 1993 .

[95]  T. Cruse,et al.  Non-singular boundary integral equation implementation , 1993 .

[96]  Siegfried Prössdorf,et al.  A Generalization of the Arnold-Wendland Lemma to a Modified Collocation Method for Boundary Integral Equations in ℝ3† , 1993 .

[97]  Martin Costabel,et al.  Spline collocation for strongly elliptic equations on the torus , 1992 .

[98]  Youdong Liang,et al.  Curvature continuity between adjacent rational Bézier patches , 1992, Comput. Aided Geom. Des..

[99]  M. Aliabadi,et al.  Dual boundary element method for three-dimensional fracture mechanics analysis , 1992 .

[100]  Dingyuan Liu,et al.  GC1 continuity conditions between two adjacent rational Bézier surface patches , 1990, Comput. Aided Geom. Des..

[101]  Wendelin L.F. DEGEN,et al.  Explicit continuity conditions for adjacent Bézier surface patches , 1990, Comput. Aided Geom. Des..

[102]  J. Telles A self-adaptive co-ordinate transformation for efficient numerical evaluation of general boundary element integrals , 1987 .

[103]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[104]  Wolfgang L. Wendland,et al.  On the asymptotic convergence of collocation methods with spline functions of even degree , 1985 .

[105]  Carlos Alberto Brebbia,et al.  The Boundary Element Method in Engineering Practice , 1984 .

[106]  Douglas N. Arnold,et al.  On the asymptotic convergence of collocation methods , 1983 .

[107]  F. Hartmann The Somigliana identity on piecewise smooth surfaces , 1981 .

[108]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[109]  J. Watson,et al.  Effective numerical treatment of boundary integral equations: A formulation for three‐dimensional elastostatics , 1976 .

[110]  Thomas A. Cruse,et al.  An improved boundary-integral equation method for three dimensional elastic stress analysis , 1974 .

[111]  T. A. Cruse,et al.  Numerical solutions in three dimensional elastostatics , 1969 .

[112]  G. T. Symm,et al.  Integral equation methods in potential theory. II , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[113]  M. A. Jaswon Integral equation methods in potential theory. I , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.