Experimental preparation and verification of quantum money

A quantum money scheme enables a trusted bank to provide untrusted users with verifiable quantum banknotes that cannot be forged. In this work, we report an experimental demonstration of the preparation and verification of unforgeable quantum banknotes. We employ a security analysis that takes experimental imperfections fully into account. We measure a total of $3.6\times 10^6$ states in one verification round, limiting the forging probability to $10^{-7}$ based on the security analysis. Our results demonstrate the feasibility of preparing and verifying quantum banknotes using currently available experimental techniques.

[1]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[4]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[5]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[6]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[7]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[8]  Elham Kashefi,et al.  Demonstration of Blind Quantum Computing , 2011, Science.

[9]  S. Wehner,et al.  Experimental implementation of bit commitment in the noisy-storage model , 2012, Nature Communications.

[10]  S. Wehner,et al.  Experimental bit commitment based on quantum communication and special relativity. , 2013, Physical review letters.

[11]  E. Kashefi,et al.  Experimental verification of quantum computation , 2013, Nature Physics.

[12]  Yoshihisa Yamamoto,et al.  Practical quantum key distribution protocol without monitoring signal disturbance , 2014, Nature.

[13]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[14]  Juan Miguel Arrazola,et al.  Quantum fingerprinting with coherent states and a constant mean number of photons , 2013, 1309.5005.

[15]  R. Ricken,et al.  Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. , 2013, Physical review letters.

[16]  Yong Zhao,et al.  Experimental unconditionally secure bit commitment. , 2013, Physical review letters.

[17]  Erika Andersson,et al.  Unconditionally Secure Quantum Signatures , 2015, Entropy.

[18]  Giulia Traverso,et al.  Perfectly secure steganography: hiding information in the quantum noise of a photograph , 2015, ArXiv.

[19]  H. de Riedmatten,et al.  Solid State Spin-Wave Quantum Memory for Time-Bin Qubits. , 2015, Physical review letters.

[20]  Saikat Guha,et al.  Quantum-secure covert communication on bosonic channels , 2015, Nature Communications.

[21]  Juan Miguel Arrazola,et al.  Experimental quantum fingerprinting with weak coherent pulses , 2015, Nature Communications.

[22]  Juan Miguel Arrazola,et al.  Covert Quantum Communication. , 2016, Physical review letters.

[23]  Franco Nori,et al.  Experimental quantum forgery of quantum optical money , 2016, 1604.04453.

[24]  Feihu Xu,et al.  Observation of Quantum Fingerprinting Beating the Classical Limit. , 2016, Physical review letters.

[25]  Jian-Wei Pan,et al.  An efficient quantum light–matter interface with sub-second lifetime , 2015, Nature Photonics.

[26]  Masahide Sasaki,et al.  Experimental transmission of quantum digital signatures over 90  km of installed optical fiber using a differential phase shift quantum key distribution system. , 2016, Optics letters.

[27]  Félix Bussières,et al.  24-Hour Relativistic Bit Commitment. , 2016, Physical review letters.

[28]  Juan Miguel Arrazola,et al.  Quantum money with nearly optimal error tolerance , 2016, 1610.06345.

[29]  R. Amiri,et al.  Secure quantum signatures using insecure quantum channels , 2015, 1507.02975.

[30]  Bing Qi,et al.  Practical challenges in quantum key distribution , 2016, npj Quantum Information.

[31]  Juan Miguel Arrazola,et al.  Practical quantum retrieval games , 2016 .

[32]  Philip Walther,et al.  Demonstration of measurement-only blind quantum computing , 2016, 1601.02451.

[33]  Yang Liu,et al.  Experimental measurement-device-independent quantum digital signatures over a metropolitan network , 2017, 1703.01021.

[34]  Iordanis Kerenidis,et al.  Experimental investigation of practical unforgeable quantum money , 2017, npj Quantum Information.

[35]  Masahide Sasaki,et al.  Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution , 2017, Scientific Reports.