Excitatory Cortical Inputs to Pallidal Neurons Via the Subthalamic Nucleus in the Monkey

How the motor-related cortical areas modulate the activity of the output nuclei of the basal ganglia is an important issue for understanding the mechanisms of motor control by the basal ganglia. In...

[1]  F. Plum Handbook of Physiology. , 1960 .

[2]  M. Yoshida,et al.  Two types of monsynaptic inhibition of pallidal neurons produced by stimulation of the diencephalon and substantia nigra. , 1971, Brain research.

[3]  M. Delong,et al.  Activity of pallidal neurons during movement. , 1971, Journal of neurophysiology.

[4]  C. Hammond,et al.  Pharmacological blockade of the globus pallidus-induced inhibitory response of subthalamic cells in the rat , 1980, Brain Research.

[5]  J. Deniau,et al.  Cortical inputs to the subthalamus: intracellular analysis , 1981, Brain Research.

[6]  H. Kita,et al.  Pallidal inputs to subthalamus: Intracellular analysis , 1983, Brain Research.

[7]  M. D. Crutcher,et al.  Relations between parameters of step-tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. IV. Relation of substantia nigra to superior colliculus. , 1983, Journal of neurophysiology.

[9]  R. Wurtz,et al.  Visual and oculomotor functions of monkey substantia nigra pars reticulata. I. Relation of visual and auditory responses to saccades. , 1983, Journal of neurophysiology.

[10]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[11]  F. Horak,et al.  Influence of the globus pallidus on arm movements in monkeys. III. Timing of movement-related information. , 1985, Journal of neurophysiology.

[12]  M. D. Crutcher,et al.  Primate globus pallidus and subthalamic nucleus: functional organization. , 1985, Journal of neurophysiology.

[13]  R. Giuffrida,et al.  Influences of pyramidal tract on the subthalamic nucleus in the cat , 1985, Neuroscience Letters.

[14]  H. Kita,et al.  Anatomy and Physiology of the Subthalamic Nucleus: A Driving Force of the Basal Ganglia , 1987 .

[15]  E. Scarnati,et al.  Pharmacological study of the cortical-induced excitation of subthalamic nucleus neurons in the rat: Evidence for amino acids as putative neurotransmitters , 1987, Neuroscience.

[16]  N. Canteras,et al.  Somatosensory inputs to the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat , 1988, Brain Research.

[17]  H. Kita,et al.  An N-methyl-d-aspartate receptor mediated excitatory postsynaptic potential evoked in subthalamic neurons in an in vitro slice preparation of the rat , 1988, Neuroscience Letters.

[18]  J. Penney,et al.  The functional anatomy of basal ganglia disorders , 1989, Trends in Neurosciences.

[19]  A. Preuss,et al.  Corticostriatal cells in comparison with pyramidal tract neurons: contrasting properties in the behaving monkey , 1989, Brain Research.

[20]  A. Nambu,et al.  Discharge patterns of pallidal neurons with input from various cortical areas during movement in the monkey , 1990, Brain Research.

[21]  Y. Smith,et al.  Topographical and Synaptic Organization of the GABA‐Containing Pallidosubthalamic Projection in the Rat , 1990, The European journal of neuroscience.

[22]  P. Robledo,et al.  Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: electrophysiological data , 1990, Brain Research.

[23]  M. Delong,et al.  Primate models of movement disorders of basal ganglia origin , 1990, Trends in Neurosciences.

[24]  H. Kita,et al.  Intracellular study of rat entopeduncular nucleus neurons in an in vitro slice preparation: electrical membrane properties , 1990, Brain Research.

[25]  G. E. Alexander,et al.  Functional architecture of basal ganglia circuits: neural substrates of parallel processing , 1990, Trends in Neurosciences.

[26]  M. Delong,et al.  Activity of identified wrist-related pallidal neurons during step and ramp wrist movements in the monkey. , 1990, Journal of neurophysiology.

[27]  P. Strick,et al.  Direction of transneuronal transport of herpes simplex virus 1 in the primate motor system is strain-dependent. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[28]  H. Kita,et al.  Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation , 1991, Brain Research.

[29]  H. Kita,et al.  Intracellular study of rat entopeduncular nucleus neurons in an in vitro slice preparation: response to subthalamic stimulation , 1991, Brain Research.

[30]  W. T. Thach,et al.  Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters. , 1991, Journal of neurophysiology.

[31]  M. Taussig The Nervous System , 1991 .

[32]  W. T. Thach,et al.  Basal ganglia motor control. I. Nonexclusive relation of pallidal discharge to five movement modes. , 1991, Journal of neurophysiology.

[33]  André Parent,et al.  Differential patterns of arborization of striatal and subthalamic fibers in the two pallidal segments in primates , 1992, Brain Research.

[34]  André Parent,et al.  Convergence of subthalamic and striatal efferents at pallidal level in primates: an anterograde double-labeling study with biocytin and PHA-L , 1992, Brain Research.

[35]  H. Kita Responses of globus pallidus neurons to cortical stimulation: intracellular study in the rat , 1992, Brain Research.

[36]  H. Kita,et al.  Responses of rat substantia nigra pars reticulata units to cortical stimulation , 1992, Neuroscience Letters.

[37]  M R DeLong,et al.  Excitotoxic acid lesions of the primate subthalamic nucleus result in transient dyskinesias of the contralateral limbs. , 1992, Journal of neurophysiology.

[38]  L. Ryan,et al.  Alteration of neuronal responses in the subthalamic nucleus following globus pallidus and neostriatal lesions in rats , 1992, Brain Research Bulletin.

[39]  M. Delong,et al.  Excitotoxic acid lesions of the primate subthalamic nucleus result in reduced pallidal neuronal activity during active holding. , 1992, Journal of neurophysiology.

[40]  W. T. Thach,et al.  Basal ganglia intrinsic circuits and their role in behavior , 1993, Current Opinion in Neurobiology.

[41]  P. Strick,et al.  Multiple output channels in the basal ganglia. , 1993, Science.

[42]  A. Nambu,et al.  The distribution of the globus pallidus neurons with input from various cortical areas in the monkeys , 1993, Brain Research.

[43]  Projections of the anterior coronal gyrus to the subthalamic nucleus in the cat: a combined retrograde and anterograde WGA-HRP study , 1993, Brain Research.

[44]  H. Kita,et al.  Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat , 1993, Brain Research.

[45]  L. Ryan,et al.  Subthalamic nucleus lesion regularizes firing patterns in globus pallidus and substantia nigra pars reticulata neurons in rats , 1993, Brain Research.

[46]  H. Bergman,et al.  The primate subthalamic nucleus. I. Functional properties in intact animals. , 1994, Journal of neurophysiology.

[47]  R. Llinás,et al.  Electrophysiology of globus pallidus neurons in vitro. , 1994, Journal of neurophysiology.

[48]  H. Kita Physiology of Two Disynaptic Pathways from the Sensori-Motor Cortex to the Basal Ganglia Output Nuclei , 1994 .

[49]  J. Bolam,et al.  The glutamate‐enriched cortical and thalamic input to neurons in the subthalamic nucleus of the rat: Convergence with GABA‐positive terminals , 1995, The Journal of comparative neurology.

[50]  Y. Smith,et al.  The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey , 1996, Neuroscience.

[51]  M. Inase,et al.  Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  J. Mink THE BASAL GANGLIA: FOCUSED SELECTION AND INHIBITION OF COMPETING MOTOR PROGRAMS , 1996, Progress in Neurobiology.

[53]  H. Kita Glutamatergic and gabaergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations , 1996, Neuroscience.

[54]  M. E. Anderson,et al.  Pallidal discharge related to the kinematics of reaching movements in two dimensions. , 1997, Journal of neurophysiology.

[55]  O. Hassani,et al.  Re-evaluation of the functional anatomy of the basal ganglia in normal and Parkinsonian states , 1997, Neuroscience.

[56]  Masahiko Inase,et al.  Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area , 1997, Neuroscience Letters.

[57]  M. Hallett,et al.  Pallidotomy for hemiballismus: Efficacy and characteristics of neuronal activity , 1997, Annals of neurology.

[58]  J. Deniau,et al.  Relationships between the Prefrontal Cortex and the Basal Ganglia in the Rat: Physiology of the Corticosubthalamic Circuits , 1998, The Journal of Neuroscience.

[59]  I. Hamada,et al.  A modified microsyringe for extracellular recording of neuronal activity , 1998, Neuroscience Research.

[60]  Hiroyuki Kitano,et al.  The distribution of neurons in the substantia nigra pars reticulata with input from the motor, premotor and prefrontal areas of the cerebral cortex in monkeys , 1998, Brain Research.

[61]  J. Bolam,et al.  Distribution of glutamate receptor subunits at neurochemically characterized synapses in the entopeduncular nucleus and subthalamic nucleus of the rat , 1998, The Journal of comparative neurology.

[62]  P. Strick,et al.  The Organization of Cerebellar and Basal Ganglia Outputs to Primary Motor Cortex as Revealed by Retrograde Transneuronal Transport of Herpes Simplex Virus Type 1 , 1999, The Journal of Neuroscience.