Combined Parameter and State Estimation in Particle Filtering
暂无分享,去创建一个
[1] Michael A. West,et al. Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.
[2] Christophe Andrieu,et al. Particle methods for change detection, system identification, and control , 2004, Proceedings of the IEEE.
[3] D. Gamerman. Markov chain Monte Carlo for dynamic generalised linear models , 1998 .
[4] Arnaud Doucet,et al. Optimisation of particle filters using simultaneous perturbation stochastic approximation , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..
[5] Timothy J. Robinson,et al. Sequential Monte Carlo Methods in Practice , 2003 .
[6] Dominic S. Lee,et al. A particle algorithm for sequential Bayesian parameter estimation and model selection , 2002, IEEE Trans. Signal Process..
[7] Petar M. Djuric,et al. Sequential particle filtering in the presence of additive Gaussian noise with unknown parameters , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[8] A. Doucet,et al. On-line optimization of sequential Monte Carlo methods using stochastic approximation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).
[9] J. Spall. Implementation of the simultaneous perturbation algorithm for stochastic optimization , 1998 .
[10] Geir Storvik,et al. Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..
[11] N. G. Best,et al. Dynamic conditional independence models and Markov chain Monte Carlo methods , 1997 .