Combined Parameter and State Estimation in Particle Filtering

In this paper, an adaptive estimation algorithm is proposed for non-linear dynamic systems with unknown static parameters based on combination of particle filtering. The estimates of static parameters are obtained by state samples and maximum-likelihood estimation in particle filtering, and the stochastic approximation is used to approximate the gradient of cost function. The proposed algorithm achieves combined state and parameters estimation. Simulation result demonstrates the efficiency of the algorithm.

[1]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[2]  Christophe Andrieu,et al.  Particle methods for change detection, system identification, and control , 2004, Proceedings of the IEEE.

[3]  D. Gamerman Markov chain Monte Carlo for dynamic generalised linear models , 1998 .

[4]  Arnaud Doucet,et al.  Optimisation of particle filters using simultaneous perturbation stochastic approximation , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[5]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[6]  Dominic S. Lee,et al.  A particle algorithm for sequential Bayesian parameter estimation and model selection , 2002, IEEE Trans. Signal Process..

[7]  Petar M. Djuric,et al.  Sequential particle filtering in the presence of additive Gaussian noise with unknown parameters , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[8]  A. Doucet,et al.  On-line optimization of sequential Monte Carlo methods using stochastic approximation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[9]  J. Spall Implementation of the simultaneous perturbation algorithm for stochastic optimization , 1998 .

[10]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[11]  N. G. Best,et al.  Dynamic conditional independence models and Markov chain Monte Carlo methods , 1997 .