Cayley graphs of given degree and diameter for cyclic, Abelian, and metacyclic groups
暂无分享,去创建一个
[1] Hans Rohrbach. Anwendung eines Satzes der additiven Zahlentheorie auf eine gruppentheoretische Frage , 1937 .
[2] Tomás Vetrík,et al. Large Cayley graphs and vertex‐transitive non‐Cayley graphs of given degree and diameter , 2010, J. Graph Theory.
[3] Claudine Peyrat,et al. Large Cayley Graphs on an Abelian Group , 1997, Discret. Appl. Math..
[4] Sam Toueg,et al. On the impossibility of Directed Moore Graphs , 1980, J. Comb. Theory, Ser. B.
[5] Eyal Loz,et al. New record graphs in the degree-diameter problem , 2008, Australas. J Comb..
[6] Marcel Herzog,et al. ON REGULAR BASES OF FINITE GROUPS , 1996 .
[7] A CanaleEduardo,et al. Asymptotically large (Δ, D)-graphs , 2005 .
[8] Randall Dougherty,et al. The Degree-Diameter Problem for Several Varieties of Cayley Graphs I: The Abelian Case , 2004, SIAM J. Discret. Math..
[9] Brendan D. McKay,et al. A Note on Large Graphs of Diameter Two and Given Maximum Degree, , 1998, J. Comb. Theory, Ser. B.
[10] Frank Thomson Leighton,et al. Applying the Classification Theorem for Finite Simple Groups to Minimize Pin Count in Uniform Permutation Architectures , 1988, AWOC.
[11] Arieh Lev,et al. On H-Bases and H-Decompositions of the Finite Solvable and Alternating Groups , 1994 .
[12] Jozef Sirán,et al. A note on large Cayley graphs of diameter two and given degree , 2005, Discret. Math..
[13] Geoffrey Exoo,et al. On the limitations of the use of solvable groups in Cayley graph cage constructions , 2010, Eur. J. Comb..
[14] J. Sirán,et al. Moore Graphs and Beyond: A survey of the Degree/Diameter Problem , 2013 .
[15] Eduardo Alberto Canale,et al. Asymptotically large (Delta, D)-graphs , 2005, Discret. Appl. Math..
[16] Gady Kozma,et al. Bases and decomposition numbers of finite groups , 1992 .
[17] Hans Rohrbach. Ein Beitrag zur additiven Zahlentheorie , 1937 .
[18] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.