Dissecting Local Circuits: Parvalbumin Interneurons Underlie Broad Feedback Control of Olfactory Bulb Output

In the mouse olfactory bulb, information from sensory neurons is extensively processed by local interneurons before being transmitted to the olfactory cortex by mitral and tufted (M/T) cells. The precise function of these local networks remains elusive because of the vast heterogeneity of interneurons, their diverse physiological properties, and their complex synaptic connectivity. Here we identified the parvalbumin interneurons (PVNs) as a prominent component of the M/T presynaptic landscape by using an improved rabies-based transsynaptic tracing method for local circuits. In vivo two-photon-targeted patch recording revealed that PVNs have exceptionally broad olfactory receptive fields and exhibit largely excitatory and persistent odor responses. Transsynaptic tracing indicated that PVNs receive direct input from widely distributed M/T cells. Both the anatomical and functional extent of this M/T→PVN→M/T circuit contrasts with the narrowly confined M/T→granule cell→M/T circuit, suggesting that olfactory information is processed by multiple local circuits operating at distinct spatial scales.

[1]  Z. Csaba,et al.  Somatostatin interneurons delineate the inner part of the external plexiform layer in the mouse main olfactory bulb , 2010, The Journal of comparative neurology.

[2]  W. Denk,et al.  Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo , 2008, Nature Methods.

[3]  Jennifer D Whitesell,et al.  Interglomerular Lateral Inhibition Targeted on External Tufted Cells in the Olfactory Bulb , 2013, The Journal of Neuroscience.

[4]  M. Yokoi,et al.  Transgenic expression of Cre recombinase in mitral/tufted cells of the olfactory bulb , 2005, Genesis.

[5]  Augusto V. Juorio,et al.  The Synaptic Organization of the Brain, 4th edition , 1998 .

[6]  Kristina J. Nielsen,et al.  Targeting Single Neuronal Networks for Gene Expression and Cell Labeling In Vivo , 2010, Neuron.

[7]  T. Komiyama,et al.  Dynamic Sensory Representations in the Olfactory Bulb: Modulation by Wakefulness and Experience , 2012, Neuron.

[8]  T. Kosaka,et al.  Calcium-binding protein parvalbumin-immunoreactive neurons in the rat olfactory bulb , 2004, Experimental Brain Research.

[9]  T. Komiyama,et al.  Parvalbumin-Expressing Interneurons Linearly Control Olfactory Bulb Output , 2013, Neuron.

[10]  Matteo Carandini,et al.  Somatosensory Integration Controlled by Dynamic Thalamocortical Feed-Forward Inhibition , 2005, Neuron.

[11]  Gerald J. Sun,et al.  Neuronal circuitry mechanism regulating adult quiescent neural stem cell fate decision , 2012, Nature.

[12]  Henry Markram,et al.  Interneuron Diversity series: Molecular and genetic tools to study GABAergic interneuron diversity and function , 2004, Trends in Neurosciences.

[13]  Upinder S Bhalla,et al.  Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse , 2010, Nature Neuroscience.

[14]  Kei M. Igarashi,et al.  Parallel Mitral and Tufted Cell Pathways Route Distinct Odor Information to Different Targets in the Olfactory Cortex , 2012, The Journal of Neuroscience.

[15]  F. Netter,et al.  Supplemental References , 2002, We Came Naked and Barefoot.

[16]  Antoniu L. Fantana,et al.  Rat Olfactory Bulb Mitral Cells Receive Sparse Glomerular Inputs , 2008, Neuron.

[17]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[18]  F. Macrides,et al.  Topographic organization of tufted cell axonal projections in the hamster main olfactory bulb: An intrabulbar associational system , 1985, The Journal of comparative neurology.

[19]  B Sakmann,et al.  Action potential propagation in mitral cell lateral dendrites is decremental and controls recurrent and lateral inhibition in the mammalian olfactory bulb. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T. Sejnowski,et al.  Cortical Enlightenment: Are Attentional Gamma Oscillations Driven by ING or PING? , 2009, Neuron.

[21]  Ian R. Wickersham,et al.  Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus , 2010, Proceedings of the National Academy of Sciences.

[22]  Ian R. Wickersham,et al.  Cortical representations of olfactory input by trans-synaptic tracing , 2011, Nature.

[23]  Thomas A. Cleland,et al.  Early transformations in odor representation , 2010, Trends in Neurosciences.

[24]  Kevin L. Briggman,et al.  Structural neurobiology: missing link to a mechanistic understanding of neural computation , 2012, Nature Reviews Neuroscience.

[25]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[26]  Gordon M Shepherd,et al.  Viral tracing identifies distributed columnar organization in the olfactory bulb , 2006, Proceedings of the National Academy of Sciences.

[27]  Markus Meister,et al.  Precision and diversity in an odor map on the olfactory bulb , 2009, Nature Neuroscience.

[28]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[29]  Peter C. Brunjes,et al.  A field guide to the anterior olfactory nucleus (cortex) , 2005, Brain Research Reviews.

[30]  M. T. Shipley,et al.  Centre–surround inhibition among olfactory bulb glomeruli , 2003, Nature.

[31]  Winfried Denk,et al.  Targeted Whole-Cell Recordings in the Mammalian Brain In Vivo , 2003, Neuron.

[32]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[33]  Amiram Grinvald,et al.  Independent component analysis of high-resolution imaging data identifies distinct functional domains , 2007, NeuroImage.

[34]  Tatsuya Yamasoba,et al.  Odorant Response Properties of Individual Neurons in an Olfactory Glomerular Module , 2013, Neuron.

[35]  Wei R. Chen,et al.  The olfactory granule cell: From classical enigma to central role in olfactory processing , 2007, Brain Research Reviews.

[36]  Tsuyoshi Inoue,et al.  Feedforward inhibitory connections from multiple thalamic cells to multiple regular-spiking cells in layer 4 of the somatosensory cortex. , 2006, Journal of neurophysiology.

[37]  Shawn R. Olsen,et al.  Divisive Normalization in Olfactory Population Codes , 2010, Neuron.

[38]  S. Arber,et al.  A Developmental Switch in the Response of DRG Neurons to ETS Transcription Factor Signaling , 2005, PLoS biology.

[39]  R. Nicoll,et al.  Dendrodendritic inhibition: demonstration with intracellular recording. , 1980, Science.

[40]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[41]  P. Bates,et al.  Characterization of Determinants for Envelope Binding and Infection in Tva, the Subgroup A Avian Sarcoma and Leukosis Virus Receptor , 1998, Journal of Virology.

[42]  Venkatesh N Murthy,et al.  Olfactory maps in the brain. , 2011, Annual review of neuroscience.

[43]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[44]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[45]  Veronica Egger,et al.  Dynamic connectivity in the mitral cell-granule cell microcircuit. , 2006, Seminars in cell & developmental biology.

[46]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[47]  Jie Tan,et al.  Odor Information Processing by the Olfactory Bulb Analyzed in Gene-Targeted Mice , 2010, Neuron.

[48]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[49]  Sandra J. Kuhlman,et al.  Fast-spiking interneurons have an initial orientation bias that is lost with vision , 2011, Nature Neuroscience.

[50]  S. Nakanishi,et al.  Refinement of odor molecule tuning by dendrodendritic synaptic inhibition in the olfactory bulb. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[51]  L. Luo,et al.  Uncoupling Dendrite Growth and Patterning: Single-Cell Knockout Analysis of NMDA Receptor 2B , 2009, Neuron.

[52]  Sachie K. Ogawa,et al.  Whole-Brain Mapping of Direct Inputs to Midbrain Dopamine Neurons , 2012, Neuron.

[53]  S. Cruikshank,et al.  Synaptic basis for intense thalamocortical activation of feedforward inhibitory cells in neocortex , 2007, Nature Neuroscience.

[54]  Benjamin R. Arenkiel,et al.  Reciprocal connectivity between mitral cells and external plexiform layer interneurons in the mouse olfactory bulb , 2013, Front. Neural Circuits.

[55]  Lawrence C Katz,et al.  Sparse and Selective Odor Coding by Mitral/Tufted Neurons in the Main Olfactory Bulb , 2007, The Journal of Neuroscience.

[56]  G. Fishell,et al.  The Distinct Temporal Origins of Olfactory Bulb Interneuron Subtypes , 2008, The Journal of Neuroscience.

[57]  Hitoshi Sakano,et al.  Neural map formation in the mouse olfactory system , 2014, Cellular and Molecular Life Sciences.

[58]  D. Saur,et al.  A Cre-loxP-based mouse model for conditional somatic gene expression and knockdown in vivo by using avian retroviral vectors , 2008, Proceedings of the National Academy of Sciences.

[59]  M. Ennis,et al.  Properties of external plexiform layer interneurons in mouse olfactory bulb slices , 2005, Neuroscience.

[60]  Gideon Rothschild,et al.  Multisensory Integration of Natural Odors and Sounds in the Auditory Cortex , 2011, Neuron.

[61]  Yoshihiro Yoshihara,et al.  Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb. , 2004, Journal of neurophysiology.

[62]  T. Kosaka,et al.  “Interneurons” in the olfactory bulb revisited , 2011, Neuroscience Research.

[63]  T. Kosaka,et al.  Heterogeneity of parvalbumin-containing neurons in the mouse main olfactory bulb, with special reference to short-axon cells and βIV-spectrin positive dendritic segments , 2008, Neuroscience Research.

[64]  Ian R. Wickersham,et al.  Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons , 2010, Nature Protocols.

[65]  E. Audinat,et al.  Action Potential Propagation in Dendrites of Rat Mitral Cells In Vivo , 2003, The Journal of Neuroscience.

[66]  L. Luo,et al.  Extensions of MADM (Mosaic Analysis with Double Markers) in Mice , 2012, PloS one.

[67]  T. Tsumoto,et al.  GABAergic Neurons Are Less Selective to Stimulus Orientation than Excitatory Neurons in Layer II/III of Visual Cortex, as Revealed by In Vivo Functional Ca2+ Imaging in Transgenic Mice , 2007, The Journal of Neuroscience.

[68]  M. Kozak An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. , 1987, Nucleic acids research.

[69]  Philipp Berens,et al.  CircStat: AMATLABToolbox for Circular Statistics , 2009, Journal of Statistical Software.

[70]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[71]  A. Keller,et al.  Long-term potentiation in the motor cortex. , 1989, Science.

[72]  K. Mori,et al.  The olfactory bulb: coding and processing of odor molecule information. , 1999, Science.

[73]  Allan R. Jones,et al.  A robust and high-throughput Cre reporting and characterization system for the whole mouse brain , 2009, Nature Neuroscience.

[74]  J. Isaacson,et al.  Odor Representations in Olfactory Cortex: “Sparse” Coding, Global Inhibition, and Oscillations , 2009, Neuron.

[75]  Minmin Luo,et al.  Response Correlation Maps of Neurons in the Mammalian Olfactory Bulb , 2001, Neuron.

[76]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.