Bayesian search for gravitational wave bursts in pulsar timing array data
暂无分享,去创建一个
[1] T. Littenberg,et al. BayesWave analysis pipeline in the era of gravitational wave observations , 2020, Physical Review D.
[2] D. Stinebring,et al. Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection , 2020, The Astrophysical Journal Letters.
[3] Andrew R. Platt. La Forge , 2020 .
[4] Stephen R. Taylor,et al. The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background , 2020, The Astrophysical Journal Letters.
[5] Zaven Arzoumanian,et al. The NANOGrav 12.5 yr Data Set: Observations and Narrowband Timing of 47 Millisecond Pulsars , 2020, The Astrophysical Journal Supplement Series.
[6] B. Bécsy,et al. Joint search for isolated sources and an unresolved confusion background in pulsar timing array data , 2019, Classical and Quantum Gravity.
[7] Stephen Taylor,et al. ENTERPRISE: Enhanced Numerical Toolbox Enabling a Robust PulsaR Inference SuitE , 2019 .
[8] D. Stinebring,et al. The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory , 2019, The Astrophysical Journal.
[9] G. Desvignes,et al. The International Pulsar Timing Array: second data release , 2019, Monthly Notices of the Royal Astronomical Society.
[10] Shaughnessy,et al. All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run , 2019 .
[11] P. K. Panda,et al. All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run , 2019, Physical Review D.
[12] D. Stinebring,et al. The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries , 2018, The Astrophysical Journal.
[13] T. Joseph W. Lazio,et al. The astrophysics of nanohertz gravitational waves , 2018, The Astronomy and Astrophysics Review.
[14] N. Cornish,et al. Detecting gravitational wave bursts with LISA in the presence of instrumental glitches , 2018, Physical Review D.
[15] B. C. Joshi,et al. Precision pulsar timing with the ORT and the GMRT and its applications in pulsar astrophysics , 2018 .
[16] R. Lynch,et al. The NANOGrav 11 yr Data Set: Solar Wind Sounding through Pulsar Timing , 2018, The Astrophysical Journal.
[17] R. Karuppusamy,et al. MeerTime - the MeerKAT Key Science Program on Pulsar Timing , 2018, 1803.07424.
[18] T. Littenberg,et al. Parameter Estimation for Gravitational-wave Bursts with the BayesWave Pipeline , 2016, The Astrophysical journal.
[19] R. Karuppusamy,et al. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.
[20] D. Stinebring,et al. The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.
[21] K. Lee. Prospects of Gravitational Wave Detection Using Pulsar Timing Array for Chinese Future Telescopes , 2016 .
[22] Justin Ellis,et al. Transdimensional Bayesian approach to pulsar timing noise analysis , 2016, 1601.00650.
[23] G. Mitselmakher,et al. Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors , 2015, 1511.05999.
[24] Erik Katsavounidis,et al. Information-theoretic approach to the gravitational-wave burst detection problem , 2015, 1511.05955.
[25] Michael Coughlin,et al. Detecting Gravitational-Wave Transients at 5σ: A Hierarchical Approach. , 2015, Physical review letters.
[26] D. Stinebring,et al. THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS , 2015, 1505.07540.
[27] L. Wen,et al. Detection and localization of single-source gravitational waves with pulsar timing arrays , 2015, 1502.06001.
[28] M. Hobson,et al. Generative pulsar timing analysis , 2014, 1412.1427.
[29] The Ligo Scientific Collaboration. Advanced LIGO , 2014, 1411.4547.
[30] Neil J. Cornish,et al. Bayesian inference for spectral estimation of gravitational wave detector noise , 2014, 1410.3852.
[31] Neil J. Cornish,et al. Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.
[32] C. Broeck,et al. Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.
[33] X. Deng. Searching for gravitational wave bursts via Bayesian nonparametric data analysis with pulsar timing arrays , 2013, 1404.0663.
[34] D. Hastie,et al. Model choice using reversible jump Markov chain Monte Carlo , 2012 .
[35] K. S. Thorne,et al. All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run , 2012, 1202.2788.
[36] M. Pitkin. Extending gravitational wave burst searches with pulsar timing arrays , 2012, 1201.3573.
[37] N. Cornish,et al. PULSAR TIMING ARRAY OBSERVATIONS OF MASSIVE BLACK HOLE BINARIES , 2010, 1008.1782.
[38] L. Finn,et al. DETECTION, LOCALIZATION, AND CHARACTERIZATION OF GRAVITATIONAL WAVE BURSTS IN A PULSAR TIMING ARRAY , 2010, 1004.3499.
[39] D. Stinebring,et al. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.
[40] Junichiro Makino,et al. Triplets of supermassive black holes: Astrophysics, Gravitational Waves and Detection , 2009, 0910.1587.
[41] Chongqing,et al. The Parkes Pulsar Timing Array Project , 2006, Publications of the Astronomical Society of Australia.
[42] T. Damour,et al. Gravitational wave bursts from cusps and kinks on cosmic strings , 2001, gr-qc/0104026.
[43] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[44] D. Gabor,et al. Theory of communication. Part 1: The analysis of information , 1946 .
[45] F. Barone,et al. Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .
[46] Peter J. Green,et al. Model Choice using Reversible Jump Markov Chain , 2011 .