Bayesian search for gravitational wave bursts in pulsar timing array data

The nanohertz frequency band explored by pulsar timing arrays provides a unique discovery space for gravitational wave (GW) signals. In addition to signals from anticipated sources, such as those from supermassive black hole binaries, some previously unimagined sources may emit transient GWs (a.k.a. bursts) with unknown morphology. Unmodeled transients are not currently searched for in this frequency band, and they require different techniques from those currently employed. Possible sources of such GW bursts in the nanohertz regime are parabolic encounters of supermassive black holes, cosmic string cusps and kinks, or other, as-yet-unknown phenomena. In this paper we present BayesHopperBurst, a Bayesian search algorithm capable of identifying generic GW bursts by modeling both coherent and incoherent transients as a sum of Morlet–Gabor wavelets. A trans-dimensional reversible jump Markov chain Monte Carlo sampler is used to select the number of wavelets best describing the data. We test BayesHopperBurst on various simulated datasets including different combinations of signals and noise transients. Its capability to run on real data is demonstrated by analyzing data of the pulsar B1855 + 09 from the NANOGrav 9 year dataset. Based on a simulated dataset resembling the NANOGrav 12.5 year data release, we predict that at our most sensitive time–frequency location we will be able to probe GW bursts with a root-sum-squared amplitude higher than ∼5 × 10−11 Hz−1/2, which corresponds to ∼40M ⊙ c 2 emitted in GWs at a fiducial distance of 100 Mpc.

[1]  T. Littenberg,et al.  BayesWave analysis pipeline in the era of gravitational wave observations , 2020, Physical Review D.

[2]  D. Stinebring,et al.  Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection , 2020, The Astrophysical Journal Letters.

[3]  Andrew R. Platt La Forge , 2020 .

[4]  Stephen R. Taylor,et al.  The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background , 2020, The Astrophysical Journal Letters.

[5]  Zaven Arzoumanian,et al.  The NANOGrav 12.5 yr Data Set: Observations and Narrowband Timing of 47 Millisecond Pulsars , 2020, The Astrophysical Journal Supplement Series.

[6]  B. Bécsy,et al.  Joint search for isolated sources and an unresolved confusion background in pulsar timing array data , 2019, Classical and Quantum Gravity.

[7]  Stephen Taylor,et al.  ENTERPRISE: Enhanced Numerical Toolbox Enabling a Robust PulsaR Inference SuitE , 2019 .

[8]  D. Stinebring,et al.  The NANOGrav 11 yr Data Set: Limits on Gravitational Wave Memory , 2019, The Astrophysical Journal.

[9]  G. Desvignes,et al.  The International Pulsar Timing Array: second data release , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  Shaughnessy,et al.  All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run , 2019 .

[11]  P. K. Panda,et al.  All-sky search for long-duration gravitational-wave transients in the second Advanced LIGO observing run , 2019, Physical Review D.

[12]  D. Stinebring,et al.  The NANOGrav 11 yr Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries , 2018, The Astrophysical Journal.

[13]  T. Joseph W. Lazio,et al.  The astrophysics of nanohertz gravitational waves , 2018, The Astronomy and Astrophysics Review.

[14]  N. Cornish,et al.  Detecting gravitational wave bursts with LISA in the presence of instrumental glitches , 2018, Physical Review D.

[15]  B. C. Joshi,et al.  Precision pulsar timing with the ORT and the GMRT and its applications in pulsar astrophysics , 2018 .

[16]  R. Lynch,et al.  The NANOGrav 11 yr Data Set: Solar Wind Sounding through Pulsar Timing , 2018, The Astrophysical Journal.

[17]  R. Karuppusamy,et al.  MeerTime - the MeerKAT Key Science Program on Pulsar Timing , 2018, 1803.07424.

[18]  T. Littenberg,et al.  Parameter Estimation for Gravitational-wave Bursts with the BayesWave Pipeline , 2016, The Astrophysical journal.

[19]  R. Karuppusamy,et al.  High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.

[20]  D. Stinebring,et al.  The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.

[21]  K. Lee Prospects of Gravitational Wave Detection Using Pulsar Timing Array for Chinese Future Telescopes , 2016 .

[22]  Justin Ellis,et al.  Transdimensional Bayesian approach to pulsar timing noise analysis , 2016, 1601.00650.

[23]  G. Mitselmakher,et al.  Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors , 2015, 1511.05999.

[24]  Erik Katsavounidis,et al.  Information-theoretic approach to the gravitational-wave burst detection problem , 2015, 1511.05955.

[25]  Michael Coughlin,et al.  Detecting Gravitational-Wave Transients at 5σ: A Hierarchical Approach. , 2015, Physical review letters.

[26]  D. Stinebring,et al.  THE NANOGRAV NINE-YEAR DATA SET: OBSERVATIONS, ARRIVAL TIME MEASUREMENTS, AND ANALYSIS OF 37 MILLISECOND PULSARS , 2015, 1505.07540.

[27]  L. Wen,et al.  Detection and localization of single-source gravitational waves with pulsar timing arrays , 2015, 1502.06001.

[28]  M. Hobson,et al.  Generative pulsar timing analysis , 2014, 1412.1427.

[29]  The Ligo Scientific Collaboration Advanced LIGO , 2014, 1411.4547.

[30]  Neil J. Cornish,et al.  Bayesian inference for spectral estimation of gravitational wave detector noise , 2014, 1410.3852.

[31]  Neil J. Cornish,et al.  Bayeswave: Bayesian inference for gravitational wave bursts and instrument glitches , 2014, 1410.3835.

[32]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[33]  X. Deng Searching for gravitational wave bursts via Bayesian nonparametric data analysis with pulsar timing arrays , 2013, 1404.0663.

[34]  D. Hastie,et al.  Model choice using reversible jump Markov chain Monte Carlo , 2012 .

[35]  K. S. Thorne,et al.  All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run , 2012, 1202.2788.

[36]  M. Pitkin Extending gravitational wave burst searches with pulsar timing arrays , 2012, 1201.3573.

[37]  N. Cornish,et al.  PULSAR TIMING ARRAY OBSERVATIONS OF MASSIVE BLACK HOLE BINARIES , 2010, 1008.1782.

[38]  L. Finn,et al.  DETECTION, LOCALIZATION, AND CHARACTERIZATION OF GRAVITATIONAL WAVE BURSTS IN A PULSAR TIMING ARRAY , 2010, 1004.3499.

[39]  D. Stinebring,et al.  The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.

[40]  Junichiro Makino,et al.  Triplets of supermassive black holes: Astrophysics, Gravitational Waves and Detection , 2009, 0910.1587.

[41]  Chongqing,et al.  The Parkes Pulsar Timing Array Project , 2006, Publications of the Astronomical Society of Australia.

[42]  T. Damour,et al.  Gravitational wave bursts from cusps and kinks on cosmic strings , 2001, gr-qc/0104026.

[43]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[44]  D. Gabor,et al.  Theory of communication. Part 1: The analysis of information , 1946 .

[45]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[46]  Peter J. Green,et al.  Model Choice using Reversible Jump Markov Chain , 2011 .