On Locally Conformally Flat Gradient Shrinking Ricci Solitons

In this paper, we first apply an integral identity on Ricci solitons to prove that closed locally conformally flat gradient Ricci solitons are of constant sectional curvature. We then generalize this integral identity to complete noncompact gradient shrinking Ricci solitons, under the conditions that the Ricci curvature is bounded from below and the Riemannian curvature tensor has at most exponential growth. As a consequence of this identity, we classify complete locally conformally flat gradient shrinking Ricci solitons with Ricci curvature bounded from below.

[1]  N. Koiso On Rotationally Symmetric Hamilton’s Equation for Kähler–Einstein Metrics , 1990 .

[2]  Zhu-Hong Zhang,et al.  GRADIENT SHRINKING SOLITONS WITH VANISHING WEYL TENSOR , 2008, 0807.1582.

[3]  A. Naber Noncompact shrinking four solitons with nonnegative curvature , 2010 .

[4]  N. Wallach,et al.  On a classification of the gradient shrinking solitons , 2007, 0710.3194.

[5]  R. Hamilton,et al.  The formations of singularities in the Ricci Flow , 1993 .

[6]  F. Fang,et al.  Complete gradient shrinking Ricci solitons have finite topological type , 2007, 0801.0103.

[7]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[8]  Lionel Giles,et al.  Translated From the Chinese , 2022 .

[9]  S. Sternberg Lectures on Differential Geometry , 1964 .

[10]  Richard S. Hamilton,et al.  The Ricci flow on surfaces , 1986 .

[11]  B. Chow,et al.  The Ricci flow on surfaces , 2004 .

[12]  T. Ivey Ricci solitons on compact three-manifolds , 1993 .

[13]  Lei Ni,et al.  ANCIENT SOLUTIONS TO KÄHLER-RICCI FLOW , 2005 .

[14]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[15]  J Cheeger,et al.  Surveys in differential geometry. Vol. XI , 2007 .

[16]  Peng Lu,et al.  The Ricci Flow: Techniques and Applications , 2007 .

[17]  I. Holopainen Riemannian Geometry , 1927, Nature.

[18]  落合 卓四郎 Recent topics in differential and analytic geometry , 1990 .

[19]  A. Naber Noncompact Shrinking 4-Solitons with Nonnegative Curvature , 2007, 0710.5579.

[20]  Wan-Xiong Shi Deforming the metric on complete Riemannian manifolds , 1989 .

[21]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[22]  William Wylie,et al.  On the classification of gradient Ricci solitons , 2007, 0712.1298.

[23]  Ricci solitons: the equation point of view , 2006, math/0607546.

[24]  M. Feldman,et al.  Rotationally symmetric shrinking and ex - panding gradient Kahler - Ricci solitons , 2003 .

[25]  Manifolds with positive curvature operators are space forms , 2006, math/0606187.

[26]  R. Hamilton Non-singular solutions of the Ricci flow on three-manifolds , 1999 .