Null controllability with constraints on the state for nonlinear heat equations

Abstract We consider the null controllability problem with a finite number of constraints on the state for a nonlinear heat equation involving gradient terms in a bounded domain of . The control is distributed along a bounded subset of the domain and the nonlinearity is assumed to be of class and globally Lipschitz. Interpreting each constraint in terms of the notion of adjoint state, we transform the linearized problem into an equivalent null controllability problem with constraint on the control. Using a Carleman inequality adapted to the constraint, we prove first the null controllability of the linearized problem. Then, by a fixed-point method, we show that the same result holds when the nonlinearity is of class and globally Lipschitz.

[1]  Jean-Pierre Puel,et al.  Approximate controllability of the semilinear heat equation , 1995, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  Jean-Claude Saut,et al.  Unique continuation for some evolution equations , 1987 .

[3]  G. Lebeau,et al.  Contróle Exact De Léquation De La Chaleur , 1995 .

[4]  Enrique Zuazua,et al.  On the Controllability of Parabolic Systems with a Nonlinear Term Involving the State and the Gradient , 2002, SIAM J. Control. Optim..

[5]  G. Mophou,et al.  Sentinels with given sensitivity , 2008, European Journal of Applied Mathematics.

[6]  Enrique Zuazua,et al.  Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities , 1999 .

[7]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[8]  Enrique Zuazua,et al.  Null and approximate controllability for weakly blowing up semilinear heat equations , 2000 .

[9]  G. Mophou,et al.  A null controllability problem with constraint on the control deriving from boundary discriminating sentinels , 2009 .

[10]  Gisèle M. Mophou,et al.  Boundary Sentinels with Given Sensitivity , 2009 .

[11]  Sigeru Mizohata,et al.  Unicité du prolongement des solutions pour quelques opérateurs différentiels paraboliques , 1958 .

[12]  Jacques Louis Lions,et al.  Sentinelles pour les systèmes distribués : à données incomplètes , 1992 .

[13]  Ousseynou Nakoulima,et al.  Optimal control for distributed systems subject to null-controllability. Application to discriminating sentinels , 2007 .