Enhanced electrochemical capacitance of nitrogen-doped ultrananocrystalline diamond through oxygen treatment

[1]  R. Beanland,et al.  Assessment of acid and thermal oxidation treatments for removing sp2 bonded carbon from the surface of boron doped diamond , 2020, Carbon.

[2]  K. Darowicki,et al.  Heterogeneous oxidation of highly boron-doped diamond electrodes and its influence on the surface distribution of electrochemical activity , 2019, Electrochimica Acta.

[3]  D. Garrett,et al.  Near-infrared excitation of nitrogen-doped ultrananocrystalline diamond photoelectrodes in saline solution , 2018, 1811.08515.

[4]  L. Hollenberg,et al.  Spatial mapping of band bending in semiconductor devices using in situ quantum sensors , 2018, Nature Electronics.

[5]  L. Hollenberg,et al.  Evidence for Primal sp2 Defects at the Diamond Surface: Candidates for Electron Trapping and Noise Sources , 2018, Advanced Materials Interfaces.

[6]  Mingji Li,et al.  Preparation of a porous boron-doped diamond/Ta electrode for the electrocatalytic degradation of organic pollutants , 2018 .

[7]  M. Florentin,et al.  Oxygen termination of homoepitaxial diamond surface by ozone and chemical methods: An experimental and theoretical perspective , 2018 .

[8]  H. Kawarada,et al.  Charge state stabilization of shallow nitrogen vacancy centers in diamond by oxygen surface modification , 2017 .

[9]  H. Meffin,et al.  Optimizing growth and post treatment of diamond for high capacitance neural interfaces. , 2016, Biomaterials.

[10]  P. Tran,et al.  The influence of sterilization on nitrogen-included ultrananocrystalline diamond for biomedical applications. , 2016, Materials science & engineering. C, Materials for biological applications.

[11]  B. Wang,et al.  Comparison of S-band radio-frequency field emission performance of nitrogen-doped nanocrystalline diamond before and after O2/Ar plasma etching , 2015 .

[12]  C. Rettner,et al.  Effect of oxygen plasma and thermal oxidation on shallow nitrogen-vacancy centers in diamond , 2014 .

[13]  R. Carpick,et al.  Nanocrystalline diamond AFM tips for chemical force spectroscopy: fabrication and photochemical functionalization , 2012 .

[14]  Robert W. Carpick,et al.  Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films , 2012 .

[15]  J. Reithmaier,et al.  UNCD/a-C nanocomposite films for biotechnological applications , 2011 .

[16]  R. Boukherroub,et al.  Comparison of different oxidation techniques on single-crystal and nanocrystalline diamond surfaces , 2010 .

[17]  M. Stutzmann,et al.  Electrochemical impedance spectroscopy of oxidized and hydrogen-terminated nitrogen-induced conductive ultrananocrystalline diamond , 2009 .

[18]  B. Mayer,et al.  The surface properties of nanocrystalline diamond and nanoparticulate diamond powder and their suitability as cell growth support surfaces. , 2008, Biomaterials.

[19]  C. Tan,et al.  Improvement in electrochemical capacitance of carbon materials by nitric acid treatment , 2008 .

[20]  S. Cogan Neural stimulation and recording electrodes. , 2008, Annual review of biomedical engineering.

[21]  Alfred B. Anderson,et al.  Charge Transfer Equilibria Between Diamond and an Aqueous Oxygen Electrochemical Redox Couple , 2007, Science.

[22]  Rashid Bashir,et al.  Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications , 2007, Biomedical microdevices.

[23]  C. Lim,et al.  Cell adhesion properties on photochemically functionalized diamond. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[24]  Olga Shenderova,et al.  Ultrananocrystalline Diamond: Synthesis, Properties, and Applications , 2006 .

[25]  O. Williams Ultrananocrystalline diamond for electronic applications , 2006 .

[26]  Jian Wang,et al.  Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of aryldiazonium salts. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[27]  A. Fujishima,et al.  AC impedance studies of anodically treated polycrystalline and homoepitaxial boron-doped diamond electrodes , 2003 .

[28]  J. Wilson,et al.  The oxidation of diamond: the geometry and stretching frequency of carbonyl on the (100) surface. , 2003, Journal of the American Chemical Society.

[29]  P. Bergonzo,et al.  Influence of the environment on the surface conductivity of chemical vapor deposition diamond , 2002 .

[30]  Phillip John,et al.  The oxidation of (100) textured diamond , 2002 .

[31]  P. Pehrsson,et al.  Thermal oxidation of the hydrogenated diamond (1 0 0) surface , 2002 .

[32]  L. Curtiss,et al.  Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films , 2001 .

[33]  J. Robertson,et al.  Origin of the 1 1 5 0 − cm − 1 Raman mode in nanocrystalline diamond , 2001 .

[34]  M. Umeno,et al.  Structural and optical properties of diamond and nano-diamond films grown by microwave plasma chemical vapor deposition , 2001 .

[35]  A. Fujishima,et al.  Surface carbonyl groups on oxidized diamond electrodes , 2000 .

[36]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[37]  A. Deneuville,et al.  Diffusion and thermal stability of hydrogen in homoepitaxial CVD diamond films , 2000 .

[38]  M. Plomp,et al.  A surface topographic investigation of {001} diamond surfaces etched in oxygen , 2000 .

[39]  William B. White,et al.  Characterization of diamond films by Raman spectroscopy , 1989 .

[40]  Haining Li,et al.  Enhanced and switchable silicon-vacancy photoluminescence in air-annealed nanocrystalline diamond films , 2020 .

[41]  Hans Kuzmany,et al.  The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films , 2004 .