Maximal and Potential Operators in Variable Exponent Morrey Spaces
暂无分享,去创建一个
[1] P. Hästö,et al. Sobolev embeddings in metric measure spaces with variable dimension , 2006 .
[2] S. Samko. On a progress in the theory of lebesgue spaces with variable exponent: maximal and singular operators , 2005 .
[3] S. Samko,et al. Maximal and Fractional Operators in Weighted $L^{p(x)}$ Spaces , 2004 .
[4] Lars Diening,et al. Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·) , 2004 .
[5] L. Diening. Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$ , 2004 .
[6] V. Burenkov,et al. Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces , 2004 .
[7] D. Adams,et al. Nonlinear potential analysis on Morrey spaces and their capacities , 2004 .
[8] S. Samko,et al. On Sobolev Theorem for Riesz-Type Potentials in Lebesgue Spaces with Variable Exponent , 2003 .
[9] S. Samko. Convolution and potential type operators in Lp(x) (Rn ) , 1998 .
[10] Dorothee D. Haroske,et al. Function spaces, differential operators and nonlinear analysis , 1993 .
[11] Mariano Giaquinta,et al. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 , 1984 .
[12] D. Adams. A note on Riesz potentials , 1975 .
[13] Charles Fefferman,et al. Some Maximal Inequalities , 1971 .
[14] J. Peetre. On the theory of Lp,λ spaces , 1969 .
[15] Charles B. Morrey,et al. On the solutions of quasi-linear elliptic partial differential equations , 1938 .