Maximal and Potential Operators in Variable Exponent Morrey Spaces

Abstract We prove the boundedness of the Hardy–Littlewood maximal operator on variable Morrey spaces 𝐿𝑝(·), λ(·)(Ω) over a bounded open set Ω ⊂ ℝ𝑛 and a Sobolev type 𝐿𝑝(·), λ(·) → 𝐿𝑞(·), λ(·)-theorem for potential operators 𝐼 α(·), also of variable order. In the case of constant α, the limiting case is also studied when the potential operator 𝐼 α acts into BMO space.

[1]  P. Hästö,et al.  Sobolev embeddings in metric measure spaces with variable dimension , 2006 .

[2]  S. Samko On a progress in the theory of lebesgue spaces with variable exponent: maximal and singular operators , 2005 .

[3]  S. Samko,et al.  Maximal and Fractional Operators in Weighted $L^{p(x)}$ Spaces , 2004 .

[4]  Lars Diening,et al.  Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Lp(·) and Wk,p(·) , 2004 .

[5]  L. Diening Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$ , 2004 .

[6]  V. Burenkov,et al.  Necessary and sufficient conditions for boundedness of the maximal operator in local Morrey-type spaces , 2004 .

[7]  D. Adams,et al.  Nonlinear potential analysis on Morrey spaces and their capacities , 2004 .

[8]  S. Samko,et al.  On Sobolev Theorem for Riesz-Type Potentials in Lebesgue Spaces with Variable Exponent , 2003 .

[9]  S. Samko Convolution and potential type operators in Lp(x) (Rn ) , 1998 .

[10]  Dorothee D. Haroske,et al.  Function spaces, differential operators and nonlinear analysis , 1993 .

[11]  Mariano Giaquinta,et al.  Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. (AM-105), Volume 105 , 1984 .

[12]  D. Adams A note on Riesz potentials , 1975 .

[13]  Charles Fefferman,et al.  Some Maximal Inequalities , 1971 .

[14]  J. Peetre On the theory of Lp,λ spaces , 1969 .

[15]  Charles B. Morrey,et al.  On the solutions of quasi-linear elliptic partial differential equations , 1938 .