High-resolution C + imaging of HDF850.1 reveals a merging galaxy at z = 5.185

New high-resolution maps with the IRAM Interferometer of the redshifted [C II] 158 micron line and the 0.98mm dust continuum of HDF850.1 at z = 5.185 show the source to have a blueshifted northern component and a redshifted southern component, with a projected separation of 0.3 arcsec, or 2 kpc. We interpret these components as primordial galaxies that are merging to form a larger galaxy. We think it is the resulting merger-driven starburst that makes HDF850.1 an ultraluminous infrared galaxy, with an L(IR) of 1E13 Lsun. The observed line and continuum brightness temperatures and the constant line-to-continuum ratio across the source imply (1) high [C II] line optical depth, (2) a [C II] excitation temperature of the same order as the dust temperature, and (3) dust continuum emission that is nearly optically thick at 158 microns. These conclusions for HDF850.1 probably also apply to other high-redshift submillimeter galaxies and quasar hosts in which the [C II] 158 micron line has been detected, as indicated by their roughly constant [C II]-to-158 micron continuum ratios, in sharp contrast to the large dispersion in their [C II]-to-FIR luminosity ratios. In brightness temperature units, the [C II] line luminosity is about the same as the predicted CO(1-0) luminosity, implying that the [C II] line can also be used to estimate the molecular gas mass, with the same assumptions as for CO.

[1]  Observatoire de Geneve,et al.  [C ii] AND 12CO(1–0) EMISSION MAPS IN HLSJ091828.6+514223: A STRONGLY LENSED INTERACTING SYSTEM AT z = 5.24 , 2013, 1310.4090.

[2]  CEA-Saclay,et al.  THE ROLE OF GALAXY INTERACTION IN THE SFR–M* RELATION: CHARACTERIZING MORPHOLOGICAL PROPERTIES OF Herschel-SELECTED GALAXIES AT 0.2 < z < 1.5 , 2013, 1309.4459.

[3]  P. P. van der Werf,et al.  SHOCK-ENHANCED C+ EMISSION AND THE DETECTION OF H2O FROM THE STEPHAN'S QUINTET GROUP-WIDE SHOCK USING HERSCHEL , 2013, 1309.1525.

[4]  F. Mannucci,et al.  Strongly star-forming rotating disks in a complex merging system at z = 4,7 as revealed by ALMA , 2013, 1308.5113.

[5]  P. Goldsmith,et al.  A Herschel [C ii] Galactic plane survey - I. The global distribution of ISM gas components , 2013, 1304.7770.

[6]  B. Altieri,et al.  A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34 , 2013, Nature.

[7]  R. Davé,et al.  PHYSICAL PROPERTIES OF SPECTROSCOPICALLY CONFIRMED GALAXIES AT z ⩾ 6. II. MORPHOLOGY OF THE REST-FRAME UV CONTINUUM AND Lyα EMISSION , 2013, 1303.0027.

[8]  A. Sternberg,et al.  The ratio of CO to total gas mass in high-redshift galaxies , 2013, 1302.6998.

[9]  Xiaohui Fan,et al.  STAR FORMATION AND GAS KINEMATICS OF QUASAR HOST GALAXIES AT z ∼ 6: NEW INSIGHTS FROM ALMA , 2013, 1302.4154.

[10]  M. Swinbank,et al.  MAPPING THE CLUMPY STRUCTURES WITHIN SUBMILLIMETER GALAXIES USING LASER-GUIDE STAR ADAPTIVE OPTICS SPECTROSCOPY , 2013, The Astrophysical Journal.

[11]  A. Omont,et al.  REDSHIFT 6.4 HOST GALAXIES OF 108 SOLAR MASS BLACK HOLES: LOW STAR FORMATION RATE AND DYNAMICAL MASS , 2013, 1302.1587.

[12]  F. Walter,et al.  Cool Gas in High-Redshift Galaxies , 2013, 1301.0371.

[13]  R. McMahon,et al.  THE ANATOMY OF AN EXTREME STARBURST WITHIN 1.3 Gyr OF THE BIG BANG REVEALED BY ALMA , 2012, 1211.6973.

[14]  Edinburgh,et al.  An ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field‐South: detection of [C ii] at z = 4.4 , 2012, 1209.1390.

[15]  P. Cox,et al.  BR1202–0725: an extreme multiple merger at z = 4.7 , 2012, 1207.6722.

[16]  R. Ellis,et al.  The intense starburst HDF 850.1 in a galaxy overdensity at z ≈ 5.2 in the Hubble Deep Field , 2012, Nature.

[17]  M. Meneghetti,et al.  Resolved [CII] emission in a lensed quasar at z = 4.4 , 2012, 1205.4035.

[18]  R. McMahon,et al.  [C ii] LINE EMISSION IN MASSIVE STAR-FORMING GALAXIES AT z = 4.7 , 2012, 1205.3498.

[19]  Liverpool John Moores University,et al.  DETECTION OF ATOMIC CARBON [C ii] 158 μm AND DUST EMISSION FROM A z = 7.1 QUASAR HOST GALAXY , 2012, 1203.5844.

[20]  D. H. Hughes,et al.  GAS AND DUST IN A SUBMILLIMETER GALAXY AT z = 4.24 FROM THE HERSCHEL ATLAS , 2011, 1107.2924.

[21]  D. Benford,et al.  A 158 μm [C ii] LINE SURVEY OF GALAXIES AT z ∼ 1–2: AN INDICATOR OF STAR FORMATION IN THE EARLY UNIVERSE , 2010, 1009.4216.

[22]  F. Bertoldi,et al.  MOST SUBMILLIMETER GALAXIES ARE MAJOR MERGERS , 2010, 1009.2495.

[23]  C. De Breuck,et al.  Strong (CII) emission at high redshift , 2009, 0904.3793.

[24]  F. Walter,et al.  A kiloparsec-scale hyper-starburst in a quasar host less than 1 gigayear after the Big Bang , 2009, Nature.

[25]  L. Cowie,et al.  A Highly Complete Spectroscopic Survey of the GOODS-N Field , 2008, 0812.2481.

[26]  A. Eckart,et al.  Black hole in the West Nucleus of Arp 220 , 2007, 0706.2599.

[27]  J. Black,et al.  A computer program for fast non-LTE analysis of interstellar line spectra With diagnostic plots to interpret observed line intensity ratios , 2007, 0704.0155.

[28]  A. Weiss,et al.  First detection of [CII]158 μm at high redshift : vigorous star formation in the early universe , 2005, astro-ph/0508064.

[29]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[30]  J. Dunlop,et al.  Discovery of the galaxy counterpart of HDF 850.1, the brightest submillimetre source in the Hubble Deep Field , 2002, astro-ph/0205480.

[31]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[32]  Constraining Ω0 with the Angular Size-Redshift Relation of Double-lobed Quasars in the FIRST Survey , 1997, astro-ph/9709174.

[33]  ROBERT E. Williams,et al.  The Hubble Deep Field: Observations, data reduction, and galaxy photometry , 1996, astro-ph/9607174.

[34]  Simon J. E. Radford,et al.  Molecular gas mass and far-infrared emission from distant luminous galaxies , 1993 .

[35]  J. M. Jackson,et al.  The optical depth of the 158 micron forbidden C-12 II line - Detection of the F = 1 - 0 forbidden C-13 II hyperfine-structure component. [in Orion nebula] , 1991 .

[36]  A. Poglitsch,et al.  The 158 micron forbidden C II line - A measure of global star formation activity in galaxies , 1991 .

[37]  Alexander G. G. M. Tielens,et al.  The Correlation of C II 158 Micron and CO (J = 1--0) Line Emission , 1989 .

[38]  Charles H. Townes,et al.  Far-infrared spectroscopy of galaxies - The 158 micron C(+) line and the energy balance of molecular clouds , 1985 .