LILLIPUT: A Lightweight Low-Latency Lookup-Table Based Decoder for Near-term Quantum Error Correction

The error rates of quantum devices are orders of magnitude higher than what is needed to run most quantum applications. To close this gap, Quantum Error Correction (QEC) encodes logical qubits and distributes information using several physical qubits. By periodically executing a syndrome extraction circuit on the logical qubits, information about errors (called syndrome) is extracted while running programs. A decoder uses these syndromes to identify and correct errors in real time, which is required to use feedback implemented in quantum algorithms [32]. Unfortunately, software decoders are slow and hardware decoders are fast but less accurate. Thus, almost all QEC studies so far have relied on offline decoding. To enable real-time decoding in near-term QEC, we propose LILLIPUT– a Lightweight Low Latency Look-Up Table decoder. LILLIPUT consists of two parts– First, it translates syndromes into error detection events that index into a LookUp Table (LUT) whose entry provides the error information in real-time. Second, it programs the LUTs with error assignments for all possible error events by running a software decoder offline. LILLIPUT tolerates an error on any operation in the quantum hardware, including gates and measurement, and the number of tolerated errors grows with the size of the code. It needs <7% logic on off-the-shelf FPGAs that allows it to be easily integrated alongside the control and readout circuits in existing systems [9]. LILLIPUT incurs a latency of few nanoseconds and enables real-time decoding. We also propose Compressed LUTs (CLUTs) to reduce the memory needed by LILLIPUT. By exploiting the fact that not all error events are equally likely and only storing data for the most probable error events, CLUTs reduce the memory needed by up-to 107x (from 148 MB to 1.38 MB) without degrading accuracy.

[1]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[2]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[3]  Frederic T. Chong,et al.  NISQ+: Boosting quantum computing power by approximating quantum error correction , 2020, 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA).

[4]  Yu Chen,et al.  29.1 A 28nm Bulk-CMOS 4-to-8GHz ¡2mW Cryogenic Pulse Modulator for Scalable Quantum Computing , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[5]  Raymond Laflamme,et al.  Demonstration of sufficient control for two rounds of quantum error correction in a solid state ensemble quantum information processor. , 2011, Physical review letters.

[6]  Andrew J. Landahl,et al.  Fault-tolerant quantum computing with color codes , 2011, 1108.5738.

[7]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[8]  Masaaki Kondo,et al.  QECOOL: On-Line Quantum Error Correction with a Superconducting Decoder for Surface Code , 2021, 2021 58th ACM/IEEE Design Automation Conference (DAC).

[9]  Onur Mutlu,et al.  Base-delta-immediate compression: Practical data compression for on-chip caches , 2012, 2012 21st International Conference on Parallel Architectures and Compilation Techniques (PACT).

[10]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[11]  Margaret Martonosi,et al.  Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers , 2019, ASPLOS.

[12]  David Poulin,et al.  Resource estimate for quantum many-body ground state preparation on a quantum computer. , 2020 .

[13]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[14]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[15]  M. A. Rol,et al.  Repeated quantum error correction on a continuously encoded qubit by real-time feedback , 2015, Nature Communications.

[16]  Li Li,et al.  Quantum teleportation of physical qubits into logical code spaces , 2020, Proceedings of the National Academy of Sciences.

[17]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[18]  Moinuddin K. Qureshi,et al.  A Scalable Decoder Micro-architecture for Fault-Tolerant Quantum Computing , 2020, ArXiv.

[19]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[20]  R. V. Meter,et al.  Layered architecture for quantum computing , 2010, 1010.5022.

[21]  James R. Wootton Benchmarking near-term devices with quantum error correction , 2020, Quantum Science and Technology.

[22]  Travis S. Humble,et al.  Stability of noisy quantum computing devices , 2021, ArXiv.

[23]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[24]  B. Neyenhuis,et al.  Realization of Real-Time Fault-Tolerant Quantum Error Correction , 2021, Physical Review X.

[25]  Nicolas Delfosse,et al.  Almost-linear time decoding algorithm for topological codes , 2017, Quantum.

[26]  Craig Gidney,et al.  How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits , 2019, Quantum.

[27]  Rasmus Pagh,et al.  Cuckoo Hashing , 2001, Encyclopedia of Algorithms.

[28]  R. Laflamme,et al.  Experimental quantum error correction with high fidelity , 2011, 1109.4821.

[29]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[30]  Adam C. Whiteside,et al.  Towards practical classical processing for the surface code: Timing analysis , 2012, 1202.5602.

[31]  James R. Wootton,et al.  Repetition code of 15 qubits , 2017, 1709.00990.

[32]  Joonho Lee,et al.  Even More Efficient Quantum Computations of Chemistry Through Tensor Hypercontraction , 2020, PRX Quantum.

[33]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[34]  M. S. Tame,et al.  Experimental demonstration of a graph state quantum error-correction code , 2014, Nature Communications.

[35]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[36]  H. Neven,et al.  Exponential suppression of bit or phase flip errors with repetitive error correction , 2021 .

[37]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[38]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[39]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[40]  Franck Cappello,et al.  Full-state quantum circuit simulation by using data compression , 2019, SC.

[41]  Austin G. Fowler,et al.  Minimum weight perfect matching of fault-tolerant topological quantum error correction in average O(1) parallel time , 2013, Quantum Inf. Comput..

[42]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[43]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[44]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[45]  Gilles Zémor,et al.  Linear-Time Maximum Likelihood Decoding of Surface Codes over the Quantum Erasure Channel , 2017, Physical Review Research.

[46]  Theodore J. Yoder,et al.  Triangular color codes on trivalent graphs with flag qubits , 2019, New Journal of Physics.

[47]  Ashley M. Stephens,et al.  Fault-tolerant thresholds for quantum error correction with the surface code , 2013, 1311.5003.

[48]  Austin G. Fowler Towards sufficiently fast quantum error correction , 2018 .

[49]  Hartmut Neven,et al.  Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization , 2019, Quantum.

[50]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..