Strict partitions and discrete dynamical systems

We prove that the set of partitions with distinct parts of a given positive integer under dominance ordering can be considered as a configuration space of a discrete dynamical model with two transition rules and with the initial configuration being the singleton partition. This allows us to characterize its lattice structure, fixed point, and longest chains as well as their length, using Chip Firing Game theory. Finally, we study the recursive structure of infinite extension of the lattice of strict partitions.