Modeling Repeated Functional Observations

We introduce a new methodological framework for repeatedly observed and thus dependent functional data, aiming at situations where curves are recorded repeatedly for each subject in a sample. Our methodology covers the case where the recordings of the curves are scheduled on a regular and dense grid and also situations more typical for longitudinal studies, where the timing of recordings is often sparse and random. The proposed models lead to an interpretable and straightforward decomposition of the inherent variation in repeatedly observed functional data and are implemented through a straightforward two-step functional principal component analysis. We provide consistency results and asymptotic convergence rates for the estimated model components. We compare the proposed model with an alternative approach via a two-dimensional Karhunen-Loève expansion and illustrate it through the analysis of longitudinal mortality data from period lifetables that are repeatedly observed for a sample of countries over many years, and also through simulation studies. This article has online supplementary materials.

[1]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[2]  T. Hsing,et al.  Uniform convergence rates for nonparametric regression and principal component analysis in functional/longitudinal data , 2010, 1211.2137.

[3]  Ana-Maria Staicu,et al.  Generalized Multilevel Functional Regression , 2009, Journal of the American Statistical Association.

[4]  H. Müller,et al.  Modeling Hazard Rates as Functional Data for the Analysis of Cohort Lifetables and Mortality Forecasting , 2009 .

[5]  Brian S. Caffo,et al.  Multilevel functional principal component analysis , 2009 .

[6]  Wenjiang J. Fu,et al.  The Intrinsic Estimator for Age‐Period‐Cohort Analysis: What It Is and How to Use It1 , 2008, American Journal of Sociology.

[7]  Hans-Georg Müller,et al.  Functional Data Analysis for Sparse Auction Data , 2008 .

[8]  Rob J. Hyndman,et al.  Robust forecasting of mortality and fertility rates: A functional data approach , 2007, Comput. Stat. Data Anal..

[9]  P. Hall,et al.  Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.

[10]  Jeffrey S. Morris,et al.  Wavelet‐based functional mixed models , 2006, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[11]  F. Yao,et al.  Penalized spline models for functional principal component analysis , 2006 .

[12]  H. Müller,et al.  Functional Data Analysis for Sparse Longitudinal Data , 2005 .

[13]  Paul H. C. Eilers,et al.  Smoothing and forecasting mortality rates , 2004 .

[14]  Marina Vannucci,et al.  Wavelet-Based Nonparametric Modeling of Hierarchical Functions in Colon Carcinogenesis , 2003 .

[15]  J. Vaupel,et al.  Broken Limits to Life Expectancy , 2002, Science.

[16]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[17]  A. Yashin,et al.  Biodemographic trajectories of longevity. , 1998, Science.

[18]  James O. Ramsay,et al.  Functional Data Analysis , 2005 .

[19]  Ronald Lee,et al.  Modeling and forecasting U. S. mortality , 1992 .

[20]  B. Silverman,et al.  Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .

[21]  E. A. Sylvestre,et al.  Principal modes of variation for processes with continuous sample curves , 1986 .

[22]  Brian Caffo,et al.  Longitudinal functional principal component analysis. , 2010, Electronic journal of statistics.

[23]  S. A. van de Geer,et al.  Lectures on Empirical Processes: Theory and Statistical Applications , 2007 .

[24]  Hans-Georg Ller,et al.  Functional Modelling and Classification of Longitudinal Data. , 2005 .

[25]  Vladimir M. Shkolnikov,et al.  Methods Protocol for the Human Mortality Database , 2002 .

[26]  R. Fildes Journal of the American Statistical Association : William S. Cleveland, Marylyn E. McGill and Robert McGill, The shape parameter for a two variable graph 83 (1988) 289-300 , 1989 .

[27]  R. Ash,et al.  Topics in stochastic processes , 1975 .