暂无分享,去创建一个
Christian Ruyer-Quil | Didier Bresch | Marguerite Gisclon | Pascal Noble | Nicolas Cellier | Fred Couderc | Gael Richard | Jean-Paul Vila | D. Bresch | C. Ruyer-Quil | M. Gisclon | F. Couderc | P. Noble | J. Vila | N. Cellier | Gaël Richard
[1] Roland Masson,et al. An abstract analysis framework for nonconforming approximations of diffusion problems on general meshes , 2010 .
[2] Amik St-Cyr,et al. A Dynamic hp-Adaptive Discontinuous Galerkin Method for Shallow-Water Flows on the Sphere with Application to a Global Tsunami Simulation , 2012 .
[3] Jean-Paul Vila,et al. Renormalized Meshfree Schemes I: Consistency, Stability, and Hybrid Methods for Conservation Laws , 2008, SIAM J. Numer. Anal..
[4] C. Ruyer-Quil,et al. A three-equation model for thin films down an inclined plane , 2016, Journal of Fluid Mechanics.
[5] Pascal Noble,et al. Stability Theory for Difference Approximations of Euler-Korteweg Equations and Application to Thin Film Flows , 2013, SIAM J. Numer. Anal..
[6] José Francisco Rodrigues,et al. Trends in Applications of Mathematics to Mechanics , 1995 .
[7] D. Serre. Sur le principe variationnel des équations de la mécanique des fluides parfaits , 1993 .
[8] P. Trontin,et al. A shallow water type model to describe the dynamic of thin partially wetting films for the simulation of anti-icing systems , 2018, 2018 Atmospheric and Space Environments Conference.
[9] S. Popinet. Numerical Models of Surface Tension , 2018 .
[10] Jan S. Hesthaven,et al. Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .
[11] H. Gouin. Symmetric forms for hyperbolic‐parabolic systems of multi‐gradient fluids , 2018, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik.
[12] C. Ruyer-Quil,et al. Optimization of consistent two-equation models for thin film flows , 2019, European Journal of Mechanics - B/Fluids.
[13] Francis X. Giraldo,et al. A nodal triangle-based spectral element method for the shallow water equations on the sphere , 2005 .
[14] Francis X. Giraldo,et al. Lagrange—Galerkin methods on spherical geodesic grids: the shallow water equations , 2000 .
[15] S. Gavrilyuk,et al. Extended Lagrangian approach for the defocusing nonlinear Schrödinger equation , 2018, Studies in Applied Mathematics.
[16] D. Bresch,et al. A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler–Korteweg equations , 2016 .
[17] D. Peregrine. A Modern Introduction to the Mathematical Theory of Water Waves. By R. S. Johnson. Cambridge University Press, 1997. xiv+445 pp. Hardback ISBN 0 521 59172 4 £55.00; paperback 0 521 59832 X £19.95. , 1998, Journal of Fluid Mechanics.
[18] Yulong Xing,et al. Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations , 2010 .
[19] Francis X. Giraldo,et al. A spectral element shallow water model on spherical geodesic grids , 2001 .
[20] G. R. Johnson,et al. NORMALIZED SMOOTHING FUNCTIONS FOR SPH IMPACT COMPUTATIONS , 1996 .
[21] Spencer J. Sherwin,et al. A triangular spectral/hp discontinuous Galerkin method for modelling 2D shallow water equations , 2004 .
[22] S. Reich,et al. The Hamiltonian particle‐mesh method for the spherical shallow water equations , 2004 .
[23] D. Bresch,et al. On Navier–Stokes–Korteweg and Euler–Korteweg Systems: Application to Quantum Fluids Models , 2017, Archive for Rational Mechanics and Analysis.
[24] Jesse Capecelatro,et al. A purely Lagrangian method for simulating the shallow water equations on a sphere using smooth particle hydrodynamics , 2018, J. Comput. Phys..
[25] Stephen J. Thomas,et al. A Discontinuous Galerkin Global Shallow Water Model , 2005, Monthly Weather Review.
[26] Julien Lallement. Modélisation et simulation numérique d'écoulements de films minces avec effet de mouillage partiel , 2019 .