Augmented Skew-Symetric System for Shallow-Water System with Surface Tension Allowing Large Gradient of Density

In this paper, we introduce a new extended version of the shallow water equations with surface tension which is skew-symmetric with respect to the L2 scalar product and allows for large gradients of fluid height. This result is a generalization of the results published by P. Noble and J.-P. Vila in [SIAM J. Num. Anal. (2016)] and by D. Bresch, F. Couderc, P. Noble and J.P. Vila in [C.R. Acad. Sciences Paris (2016)] which are restricted to quadratic forms of the capillary energy respectively in the one dimensional and two dimensional setting.This is also an improvement of the results by J. Lallement, P. Villedieu et al. published in [AIAA Aviation Forum 2018] where the augmented version is not skew-symetric with respect to the L2 scalar product. Based on this new formulation, we propose a new numerical scheme and perform a nonlinear stability analysis.Various numerical simulations of the shallow water equations are presented to show differences between quadratic (w.r.t the gradient of the height) and general surface tension energy when high gradients of the fluid height occur.

[1]  Roland Masson,et al.  An abstract analysis framework for nonconforming approximations of diffusion problems on general meshes , 2010 .

[2]  Amik St-Cyr,et al.  A Dynamic hp-Adaptive Discontinuous Galerkin Method for Shallow-Water Flows on the Sphere with Application to a Global Tsunami Simulation , 2012 .

[3]  Jean-Paul Vila,et al.  Renormalized Meshfree Schemes I: Consistency, Stability, and Hybrid Methods for Conservation Laws , 2008, SIAM J. Numer. Anal..

[4]  C. Ruyer-Quil,et al.  A three-equation model for thin films down an inclined plane , 2016, Journal of Fluid Mechanics.

[5]  Pascal Noble,et al.  Stability Theory for Difference Approximations of Euler-Korteweg Equations and Application to Thin Film Flows , 2013, SIAM J. Numer. Anal..

[6]  José Francisco Rodrigues,et al.  Trends in Applications of Mathematics to Mechanics , 1995 .

[7]  D. Serre Sur le principe variationnel des équations de la mécanique des fluides parfaits , 1993 .

[8]  P. Trontin,et al.  A shallow water type model to describe the dynamic of thin partially wetting films for the simulation of anti-icing systems , 2018, 2018 Atmospheric and Space Environments Conference.

[9]  S. Popinet Numerical Models of Surface Tension , 2018 .

[10]  Jan S. Hesthaven,et al.  Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .

[11]  H. Gouin Symmetric forms for hyperbolic‐parabolic systems of multi‐gradient fluids , 2018, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik.

[12]  C. Ruyer-Quil,et al.  Optimization of consistent two-equation models for thin film flows , 2019, European Journal of Mechanics - B/Fluids.

[13]  Francis X. Giraldo,et al.  A nodal triangle-based spectral element method for the shallow water equations on the sphere , 2005 .

[14]  Francis X. Giraldo,et al.  Lagrange—Galerkin methods on spherical geodesic grids: the shallow water equations , 2000 .

[15]  S. Gavrilyuk,et al.  Extended Lagrangian approach for the defocusing nonlinear Schrödinger equation , 2018, Studies in Applied Mathematics.

[16]  D. Bresch,et al.  A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler–Korteweg equations , 2016 .

[17]  D. Peregrine A Modern Introduction to the Mathematical Theory of Water Waves. By R. S. Johnson. Cambridge University Press, 1997. xiv+445 pp. Hardback ISBN 0 521 59172 4 £55.00; paperback 0 521 59832 X £19.95. , 1998, Journal of Fluid Mechanics.

[18]  Yulong Xing,et al.  Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations , 2010 .

[19]  Francis X. Giraldo,et al.  A spectral element shallow water model on spherical geodesic grids , 2001 .

[20]  G. R. Johnson,et al.  NORMALIZED SMOOTHING FUNCTIONS FOR SPH IMPACT COMPUTATIONS , 1996 .

[21]  Spencer J. Sherwin,et al.  A triangular spectral/hp discontinuous Galerkin method for modelling 2D shallow water equations , 2004 .

[22]  S. Reich,et al.  The Hamiltonian particle‐mesh method for the spherical shallow water equations , 2004 .

[23]  D. Bresch,et al.  On Navier–Stokes–Korteweg and Euler–Korteweg Systems: Application to Quantum Fluids Models , 2017, Archive for Rational Mechanics and Analysis.

[24]  Jesse Capecelatro,et al.  A purely Lagrangian method for simulating the shallow water equations on a sphere using smooth particle hydrodynamics , 2018, J. Comput. Phys..

[25]  Stephen J. Thomas,et al.  A Discontinuous Galerkin Global Shallow Water Model , 2005, Monthly Weather Review.

[26]  Julien Lallement Modélisation et simulation numérique d'écoulements de films minces avec effet de mouillage partiel , 2019 .