Light emission efficiency and dynamics in silicon-rich silicon nitride films

Light-emitting Si-rich silicon nitride (SRN) films were fabricated by plasma enhanced chemical vapor deposition followed by thermal annealing and the SRN external quantum efficiency was measured. The SRN light emission temperature dependence and recombination dynamics were also studied. Small emission thermal quenching from 4 to 330 K with wavelength dependent, nanosecond recombination lifetime was observed. Light emission from SRN systems can provide alternative routes towards the fabrication of efficient Si-based optical devices.

[1]  B. Jalali,et al.  Silicon Photonics , 2006, Journal of Lightwave Technology.

[2]  L. D. Negro,et al.  Light emission from silicon-rich nitride nanostructures , 2006 .

[3]  L. D. Negro,et al.  Spectrally enhanced light emission from aperiodic photonic structures , 2005 .

[4]  E. Sargent,et al.  High near-infrared photoluminescence quantum efficiency from PbS nanocrystals in polymer films , 2005 .

[5]  G. Sung,et al.  High efficiency visible electroluminescence from silicon nanocrystals embedded in silicon nitride using a transparent doping layer , 2005 .

[6]  S. Ossicini,et al.  Ab initio structural and electronic properties of hydrogenated silicon nanoclusters in the ground and excited state , 2004 .

[7]  C. S. Tsai,et al.  Stimulated emission in a nanostructured silicon pn junction diode using current injection , 2004 .

[8]  L. D. Negro,et al.  Stimulated emission in nanocrystalline silicon superlattices , 2003 .

[9]  Lorenzo Pavesi,et al.  Dynamics of stimulated emission in silicon nanocrystals , 2003 .

[10]  Giulia Galli,et al.  Quantum Monte Carlo calculations of nanostructure optical gaps: application to silicon quantum dots. , 2002, Physical review letters.

[11]  M. Räsänen,et al.  Optical gain in Si/SiO2 lattice: Experimental evidence with nanosecond pulses , 2001 .

[12]  T. Seong,et al.  Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride. , 2001, Physical review letters.

[13]  Luca Dal Negro,et al.  Optical gain in silicon nanocrystals , 2000, Nature.

[14]  H. Atwater,et al.  Size-dependent electron-hole exchange interaction in Si nanocrystals , 2000 .

[15]  J. Jorné,et al.  Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen , 1999 .

[16]  Nobuyoshi Koshida,et al.  Enhancement of the quantum efficiency and stability of electroluminescence from porous silicon by anodic passivation , 1998 .

[17]  A. G. Cullis,et al.  The structural and luminescence properties of porous silicon , 1997 .

[18]  B. Gelloz Possible explanation of the contradictory results on the porous silicon photoluminescence evolution after low temperature treatments , 1997 .

[19]  K. D. Hirschman,et al.  Silicon-based visible light-emitting devices integrated into microelectronic circuits , 1996, Nature.

[20]  D. J. Lockwood,et al.  Quantum confinement and light emission in SiO2/Si superlattices , 1995, Nature.

[21]  Stephen C. Rand,et al.  Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition , 1995 .

[22]  L. Canham,et al.  Identification of radiative transitions in highly porous silicon , 1993 .

[23]  Muller,et al.  Mechanisms of visible-light emission from electro-oxidized porous silicon. , 1992, Physical review. B, Condensed matter.

[24]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[25]  Jacques I. Pankove,et al.  Optical Processes in Semiconductors , 1971 .