Stability analysis of fractional-order systems with double noncommensurate orders for matrix case

Bounded-input bounded-output stability issues for fractional-order linear time invariant (LTI) system with double noncommensurate orders for the matrix case have been established in this paper. Sufficient and necessary condition of stability is given, and a simple algorithm to test the stability for this kind of fractional-order systems is presented. Based on the numerical inverse Laplace transform technique, time-domain responses for fractional-order system with double noncommensurate orders are shown in numerical examples to illustrate the proposed results.

[1]  K. Moore,et al.  Discretization schemes for fractional-order differentiators and integrators , 2002 .

[2]  Chyi Hwang,et al.  A numerical algorithm for stability testing of fractional delay systems , 2006, Autom..

[3]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems with the Fractional Order $\alpha$: The $0≪\alpha≪1$ Case , 2010, IEEE Transactions on Automatic Control.

[4]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[5]  Jonathan R. Partington,et al.  Stabilization of some fractional delay systems of neutral type , 2007, Autom..

[6]  Athanassios S. Fokas,et al.  Complex Variables: Contents , 2003 .

[7]  YangQuan Chen,et al.  Fractional-order Systems and Controls , 2010 .

[8]  Jun-Guo Lu,et al.  Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach , 2009, IEEE Transactions on Automatic Control.

[9]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[10]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[11]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[12]  Yangquan Chen,et al.  A Fractional Order Proportional and Derivative (FOPD) Motion Controller: Tuning Rule and Experiments , 2010, IEEE Transactions on Control Systems Technology.

[13]  R. Rubin,et al.  Singularities of Linear System Functions , 1961 .

[14]  Yangquan Chen,et al.  Robust stability check of fractional order linear time invariant systems with interval uncertainties , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[15]  Jonathan R. Partington,et al.  Analysis of fractional delay systems of retarded and neutral type , 2002, Autom..

[16]  D. Matignon,et al.  Some Results on Controllability and Observability of Finite-dimensional Fractional Differential Systems , 1996 .

[17]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[18]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[19]  A. Fairhall,et al.  Fractional differentiation by neocortical pyramidal neurons , 2008, Nature Neuroscience.

[20]  Yangquan Chen,et al.  Necessary and sufficient stability condition of fractional-order interval linear systems , 2008, Autom..

[21]  Luigi Fortuna,et al.  Fractional Order Systems: Modeling and Control Applications , 2010 .

[22]  YangQuan Chen,et al.  Fractional-order systems and control : fundamentals and applications , 2010 .

[23]  A. Fokas,et al.  Complex Variables: Introduction and Applications , 1997 .

[24]  Mikael Enelund,et al.  Fractional Derivative Viscoelasticity at Large Deformations , 2003 .

[25]  Yangquan Chen,et al.  Analytical impulse response of a fractional second order filter and its impulse response invariant discretization , 2011, Signal Process..

[26]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[27]  Ahmed S. Elwakil,et al.  Fractional-order sinusoidal oscillators: Design procedure and practical examples , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[28]  N. Heymans,et al.  Fractional Calculus Description of Non-Linear Viscoelastic Behaviour of Polymers , 2004 .

[29]  D. Matignon Stability results for fractional differential equations with applications to control processing , 1996 .

[30]  Tom T. Hartley,et al.  Fractional-order system identification based on continuous order-distributions , 2003, Signal Process..

[31]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[32]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[33]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[34]  I. Podlubny Fractional differential equations , 1998 .

[35]  R. Koeller,et al.  Toward an equation of state for solid materials with memory by use of the half-order derivative , 2007 .

[36]  Andrew G. Alleyne,et al.  A Robust Controller Interpolation Design Technique , 2007, IEEE Transactions on Control Systems Technology.

[37]  M. Shitikova,et al.  Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results , 2010 .