An Advanced GNU Radio Receiver of IEEE 802.15.4 OQPSK Physical Layer

In this article, we present an advanced coherent receiver for the IEEE 802.15.4 offset quadrature phase-shift keying (OQPSK) physical layer and provide an open-source implementation in the GNU Radio framework. Simulation and field test results show that the proposed receiver achieves about 11-dB power gain over an existing GNU Radio receiver, which treats OQPSK as minimum-shift-keying (MSK) for low-complexity processing. While suitable modules can be added to the MSK-based receiver for performance enhancement, the proposed receiver still maintains a 6-dB power gain. The proposed coherent receiver is attractive for IoT applications where a powerful software-defined-radio (SDR)-based gateway is deployed to interact with various sensors.

[1]  Peter Planinsic,et al.  Implementation of coherent IEEE 802.15.4 receiver on software defined radio platform , 2015, 2015 23rd Telecommunications Forum Telfor (TELFOR).

[2]  Eduardo Grampín,et al.  Accelerating an IEEE 802.11 a/g/p Transceiver in GNU Radio , 2016, LANC.

[3]  K. Mueller,et al.  Timing Recovery in Digital Synchronous Data Receivers , 1976, IEEE Trans. Commun..

[4]  C GILYGIL,et al.  University of California, Los Angeles , 1963, Medical History.

[5]  Marc Rosales,et al.  Implementation of a Physical Layer Wireless Sensor Network Testbed using Software Defined Radios , 2019, 2019 International Symposium on Multimedia and Communication Technology (ISMAC).

[6]  David Starobinski,et al.  SDR-based PHY Characterization of Zigbee Devices , 2020, 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems (MWSCAS).

[7]  Lei Shu,et al.  Beacon Synchronization and Duty-Cycling in IEEE 802.15.4 Cluster-Tree Networks: A Review , 2018, IEEE Internet of Things Journal.

[8]  Falko Dressler,et al.  An IEEE 802.11a/g/p OFDM receiver for GNU radio , 2013, SRIF '13.

[9]  Gianluigi Ferrari,et al.  From Micro to Macro IoT: Challenges and Solutions in the Integration of IEEE 802.15.4/802.11 and Sub-GHz Technologies , 2018, IEEE Internet of Things Journal.

[10]  Tao Jiang,et al.  Path Loss Models for IEEE 802.15.4 Vehicle-to-Infrastructure Communications in Rural Areas , 2018, IEEE Internet of Things Journal.

[11]  Falko Dressler,et al.  mSync: Physical Layer Frame Synchronization without Preamble Symbols , 2018, IEEE Transactions on Mobile Computing.

[12]  S.G. Wilson,et al.  IEEE 802.15.4 PHY analysis: Power spectrum and error performance , 2008, 2008 Annual IEEE India Conference.

[13]  Zhizhong Zhang,et al.  Building Gateway Interconnected Heterogeneous ZigBee and WiFi Network Based on Software Defined Radio , 2019, ChinaCom.

[14]  Andrew G. Klein,et al.  Software Receiver Design: Build your Own Digital Communication System in Five Easy Steps , 2011 .

[15]  Kai Kang,et al.  A Robust Demodulator for OQPSK–DSSS System , 2015, Circuits Syst. Signal Process..

[16]  Jianwei Cui,et al.  A high efficient baseband transceiver for IEEE 802.15.4 LR-WPAN systems , 2011, 2011 9th IEEE International Conference on ASIC.

[17]  Uroš Pešović,et al.  Carrier synchronization algorithm for software defined radio , 2017, 2017 25th Telecommunication Forum (TELFOR).

[18]  Taku Noguchi,et al.  IEEE 802.15.4 Historical Evolution and Trends , 2019, 2019 21st International Conference on Advanced Communication Technology (ICACT).

[19]  F. Dressler,et al.  A GNU Radio-based IEEE 802.15.4 Testbed , 2013 .

[20]  Thomas Schmid NESL GNU Radio 802 . 15 . 4 En-and Decoding , 2006 .

[21]  Kwyro Lee,et al.  Simple Design of Detector in the Presence of Frequency Offset for IEEE 802.15.4 LR-WPANs , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[22]  Vlad Popescu,et al.  SDR-based gateway for IoT and M2M applications , 2018, 2018 Baltic URSI Symposium (URSI).

[23]  S. Bourdel,et al.  Simple demodulator for 802.15.4 low-cost receivers , 2006, 2006 IEEE Radio and Wireless Symposium.

[24]  Liuqing Yang,et al.  Collision Recognition in Multihop IEEE 802.15.4-Compliant Wireless Sensor Networks , 2019, IEEE Internet of Things Journal.

[25]  Thomas W. Rondeau,et al.  Inspecting GNU radio applications with controlport and performance counters , 2013, SRIF '13.

[26]  Yu Cheng,et al.  Joint Scheduling and Channel Allocation for End-to-End Delay Minimization in Industrial WirelessHART Networks , 2019, IEEE Internet of Things Journal.

[27]  Zhibo Pang,et al.  Software-Defined Wireless Communication for Industrial Control: A Realistic Approach , 2019, IEEE Industrial Electronics Magazine.

[28]  Ajay Kumar Nain,et al.  A Residual Phase Noise Compensation Method for IEEE 802.15.4 Compliant Dual-Mode Receiver for Diverse Low Power IoT Applications , 2019, IEEE Internet of Things Journal.

[29]  Wolfgang Kellerer,et al.  Veni Vidi Dixi: reliable wireless communication with depth images , 2019, CoNEXT.

[30]  V. V. Mani,et al.  Synchronization in IEEE 802.15.4 Zigbee transceiver using Matlab Simulink , 2015, 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI).

[31]  Cailian Chen,et al.  Efficient Error Packet Recovery without Redundant Bytes for IEEE 802.15.4 Protocol , 2019, 2019 3rd International Symposium on Autonomous Systems (ISAS).

[32]  Roger Martinsen Koteng Evaluation of SDR-implementation of IEEE 802.15.4 Physical Layer , 2006 .