Novel preconditioners for the iterative solution to FE-discretized coupled consolidation equations

A major computational issue in the finite element (FE) integration of coupled consolidation equations is the repeated solution in time of the resulting discretized indefinite system. Because of ill-conditioning, the iterative solution, which is recommended in large size 3D settings, requires the computation of a suitable preconditioner to guarantee convergence. In this paper the coupled system is solved by a Krylov subspace method preconditioned by an inexact constraint preconditioner (ICP) preserving the same block structure as the native FE matrix. The conditioning number of the preconditioned coupled problem depends on the quality of the approximation of the block corresponding to the structural stiffness matrix. An efficient algorithm to implement ICP into a Krylov subspace method is developed. Numerical tests performed on realistic 3D problems reveal that ICP typically outperforms standard ILUT preconditioners and proves much more robust in severely ill-conditioned problems.

[1]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[2]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[3]  Giuseppe Gambolati,et al.  Numerical performance of projection methods in finite element consolidation models , 2001 .

[4]  H. Elman,et al.  Efficient preconditioning of the linearized Navier-Stokes , 1999 .

[5]  Michele Benzi,et al.  A Sparse Approximate Inverse Preconditioner for Nonsymmetric Linear Systems , 1998, SIAM J. Sci. Comput..

[6]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[7]  Tullio Tucciarelli,et al.  A 3-D finite element conjugate gradient model of subsurface flow with automatic mesh generation , 1986 .

[8]  Jordi Castro,et al.  A Specialized Interior-Point Algorithm for Multicommodity Network Flows , 1999, SIAM J. Optim..

[9]  L. Kolotilina,et al.  Factorized Sparse Approximate Inverse Preconditionings I. Theory , 1993, SIAM J. Matrix Anal. Appl..

[10]  K. Toh,et al.  Block preconditioners for symmetric indefinite linear systems , 2004 .

[11]  Ilaria Perugia,et al.  Block-diagonal and indefinite symmetric preconditioners for mixed finite element formulations , 2000, Numer. Linear Algebra Appl..

[12]  Giuseppe Gambolati,et al.  Ill-conditioning of finite element poroelasticity equations , 2001 .

[13]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[14]  Kok-Kwang Phoon,et al.  A modified Jacobi preconditioner for solving ill‐conditioned Biot's consolidation equations using symmetric quasi‐minimal residual method , 2001 .

[15]  Michele Benzi,et al.  Robust Approximate Inverse Preconditioning for the Conjugate Gradient Method , 2000, SIAM J. Sci. Comput..

[16]  M. Benzi,et al.  A comparative study of sparse approximate inverse preconditioners , 1999 .

[17]  Andrew J. Wathen,et al.  Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.

[18]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[19]  L. Luksan,et al.  Indefinitely preconditioned inexact Newton method for large sparse equality constrained non‐linear programming problems , 1998 .

[20]  Giuseppe Gambolati,et al.  Scaling improves stability of preconditioned CG‐like solvers for FE consolidation equations , 2003 .

[21]  Luca Bergamaschi,et al.  Preconditioning Indefinite Systems in Interior Point Methods for Optimization , 2004, Comput. Optim. Appl..

[22]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[23]  Valeria Simoncini,et al.  Krylov Subspace Methods for Saddle Point Problems with Indefinite Preconditioning , 2002, SIAM J. Matrix Anal. Appl..

[24]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[25]  Marcus J. Grote,et al.  Parallel Preconditioning with Sparse Approximate Inverses , 1997, SIAM J. Sci. Comput..

[26]  YereminA. Yu.,et al.  Factorized sparse approximate inverse preconditionings I , 1993 .

[27]  Luca Bergamaschi,et al.  Erratum to: Inexact constraint preconditioners for linear systems arising in interior point methods , 2011, Comput. Optim. Appl..

[28]  V. Simoncini,et al.  Block--diagonal and indefinite symmetric preconditioners for mixed finite element formulations , 1999 .

[29]  Luca Bergamaschi,et al.  Efficient preconditioners for Krylov subspace methods in the solution of coupled consolidation problems , 2006 .

[30]  Tayfun E. Tezduyar,et al.  A robust preconditioner for fluid–structure interaction problems , 2005 .

[31]  G. Gambolati,et al.  Direct, partitioned and projected solution to finite element consolidation models , 2002 .

[32]  J. C. Small,et al.  An investigation of the stability of numerical solutions of Biot's equations of consolidation , 1975 .

[33]  W. Knaap Nonlinear Behavior of Elastic Porous Media , 1959 .

[34]  X. Chen,et al.  A modified SSOR preconditioner for sparse symmetric indefinite linear systems of equations , 2006 .

[35]  J. Geertsma,et al.  Land subsidence above compacting oil and gas reservoirs , 1973 .

[36]  Jan Vlcek,et al.  Indefinitely preconditioned inexact Newton method for large sparse equality constrained non-linear programming problems , 1998, Numer. Linear Algebra Appl..