Self-organization of oriented calcium carbonate/polymer composites: effects of a matrix peptide isolated from the exoskeleton of a crayfish.

are fascinating bio-minerals in the view of materials science, because they areductile, tough, and lightweight. The exoskeleton of crayfishmainlyconsistsofframeworksofa-chitin/proteinmicrofibrilsand calcium carbonate that is closely associated with thefibrils. Figure1a shows the scanning electron microscopy(SEM) image of a fracture surface of the exoskeleton of acrayfish, Procambarusclarkii. X-ray studies revealed thatbothcalciteandamorphouscalciumcarbonatearepresentincrayfishexoskeletons.

[1]  Dierk Raabe,et al.  Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue , 2005 .

[2]  Dierk Raabe,et al.  The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material , 2005 .

[3]  M. Epple,et al.  The mineral phase in the cuticles of two species of Crustacea consists of magnesium calcite, amorphous calcium carbonate, and amorphous calcium phosphate. , 2005, Dalton transactions.

[4]  Joong Tark Han,et al.  Mosaic, Single‐Crystal CaCO3 Thin Films Fabricated on Modified Polymer Templates , 2005 .

[5]  H. Nagasawa,et al.  A novel calcium-binding peptide from the cuticle of the crayfish, Procambarus clarkii. , 2004, Biochemical and biophysical research communications.

[6]  A. Boskey,et al.  In Vitro Effects of Dentin Matrix Protein-1 on Hydroxyapatite Formation Provide Insights into in Vivo Functions* , 2004, Journal of Biological Chemistry.

[7]  Takashi Kato,et al.  Calcium carbonate/polymer composites: polymorph control for aragonite , 2004 .

[8]  J. Evans,et al.  Characterization of two molluscan crystal‐modulating biomineralization proteins and identification of putative mineral binding domains , 2003, Biopolymers.

[9]  H. Nagasawa,et al.  Cloning and expression of a cDNA encoding a matrix peptide associated with calcification in the exoskeleton of the crayfish. , 2003, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[10]  Takashi Kato,et al.  Self-organized calcium carbonate with regular surface-relief structures. , 2003, Angewandte Chemie.

[11]  Arthur Veis,et al.  Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1 , 2003, Nature materials.

[12]  Steve Weiner,et al.  Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization , 2003 .

[13]  S. Weiner,et al.  Mollusk Shell Acidic Proteins: In Search of Individual Functions , 2003, Chembiochem : a European journal of chemical biology.

[14]  S. Weiner,et al.  The Transient Phase of Amorphous Calcium Carbonate in Sea Urchin Larval Spicules: The Involvement of Proteins and Magnesium Ions in Its Formation and Stabilization , 2003 .

[15]  F. Meldrum Calcium carbonate in biomineralisation and biomimetic chemistry , 2003 .

[16]  H. Cölfen Precipitation of carbonates: recent progress in controlled production of complex shapes , 2003 .

[17]  Joanna Aizenberg,et al.  Direct Fabrication of Large Micropatterned Single Crystals , 2003, Science.

[18]  Arnaud Hecker,et al.  Phosphorylation of serine residues is fundamental for the calcium‐binding ability of Orchestin, a soluble matrix protein from crustacean calcium storage structures , 2003, FEBS letters.

[19]  Stephen Mann,et al.  Emergent Nanostructures: Water‐Induced Mesoscale Transformation of Surfactant‐Stabilized Amorphous Calcium Carbonate Nanoparticles in Reverse Microemulsions , 2002 .

[20]  Takashi Kato,et al.  Calcium Carbonate–Organic Hybrid Materials , 2002 .

[21]  J. Aizenberg,et al.  Factors involved in the formation of amorphous and crystalline calcium carbonate: a study of an ascidian skeleton. , 2002, Journal of the American Chemical Society.

[22]  C. Achete,et al.  Comparative study on structural features of α chitin from Xiphopenaeus kroyeri and its precipitated product from phosphoric acid solution , 2002 .

[23]  S. Weiner,et al.  Structural Differences Between Biogenic Amorphous Calcium Carbonate Phases Using X-ray Absorption Spectroscopy** , 2002 .

[24]  S. Hamodrakas,et al.  "Soft"-cuticle protein secondary structure as revealed by FT-Raman, ATR FT-IR and CD spectroscopy. , 2001, Insect biochemistry and molecular biology.

[25]  Takashi Kato,et al.  Thin-Film Formation of Calcium Carbonate Crystals: Effects of Functional Groups of Matrix Polymers , 2001 .

[26]  H. Nagasawa,et al.  Purification and Structural Determination of a Phosphorylated Peptide with Anti-calcification and Chitin-binding Activities in the Exoskeleton of the Crayfish, Procambarus clarkii , 2001, Bioscience, biotechnology, and biochemistry.

[27]  F. Meldrum,et al.  Control of calcium carbonate morphology bytransformation of an amorphous precursor in a constrained volume , 2001 .

[28]  Takashi Kato Polymer/Calcium Carbonate Layered Thin‐Film Composites , 2000 .

[29]  L. Gower,et al.  Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process , 2000 .

[30]  Takashi Kato,et al.  Layered Thin-Film Composite Consisting of Polymers and Calcium Carbonate: A Novel Organic/Inorganic Material with an Organized Structure , 2000 .

[31]  S. Weiner,et al.  Formation of High‐Magnesian Calcites via an Amorphous Precursor Phase: Possible Biological Implications , 2000 .

[32]  Takashi Kato,et al.  Aragonite CaCO3 thin-film formation by cooperation of Mg2+ and organic polymer matrices , 2000 .

[33]  T. Samata,et al.  A new matrix protein family related to the nacreous layer formation of Pinctada fucata , 1999, FEBS letters.

[34]  Takashi Kato,et al.  Effects of macromolecules on the crystallization of CaCO3 the Formation of Organic/Inorganic Composites , 1998 .

[35]  P. Hansma,et al.  Molecular Cloning and Characterization of Lustrin A, a Matrix Protein from Shell and Pearl Nacre of Haliotis rufescens * , 1997, The Journal of Biological Chemistry.

[36]  X. H. Wu,et al.  Control of crystal phase switching and orientation by soluble mollusc-shell proteins , 1996, Nature.

[37]  J. Aizenberg,et al.  Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates , 1996 .

[38]  S. Weiner,et al.  Control of Aragonite or Calcite Polymorphism by Mollusk Shell Macromolecules , 1996, Science.

[39]  S. O. Andersen,et al.  Insect cuticular proteins. , 1995, Insect biochemistry and molecular biology.

[40]  S. Weiner,et al.  Control and Design Principles in Biological Mineralization , 1992 .

[41]  Lia Addadi,et al.  Kontroll‐ und Designprinzipien bei der Biomineralisation , 1992 .

[42]  L. Riddiford,et al.  Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. , 1988, Journal of molecular biology.

[43]  S. Weiner,et al.  Interactions of sea-urchin skeleton macromolecules with growing calcite crystals— a study of intracrystalline proteins , 1988, Nature.

[44]  S. Weiner,et al.  Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Wheeler,et al.  Control of calcium carbonate nucleation and crystal growth by soluble matrx of oyster shell. , 1981, Science.

[46]  D. Travis STRUCTURAL FEATURES OF MINERALIZATION FROM TISSUE TO MACROMOLECULAR LEVELS OF ORGANIZATION IN THE DECAPOD CRUSTACEA * , 1963, Annals of the New York Academy of Sciences.