Phase-type distributions in population genetics.

[1]  N. Kurt,et al.  A NEW COALESCENT FOR SEEDBANK MODELS By , 2020 .

[2]  G. Kersting,et al.  Tree lengths for general $\Lambda $-coalescents and the asymptotic site frequency spectrum around the Bolthausen–Sznitman coalescent , 2018, The Annals of Applied Probability.

[3]  Amaury Lambert,et al.  Trees within trees: simple nested coalescents , 2018, 1803.02133.

[4]  L. Ferretti,et al.  The third moments of the site frequency spectrum. , 2018, Theoretical population biology.

[5]  F. Freund,et al.  Genealogical Properties of Subsamples in Highly Fecund Populations , 2017, bioRxiv.

[6]  Mogens Bladt,et al.  Matrix-Exponential Distributions in Applied Probability , 2017 .

[7]  R. Costa,et al.  Inference of Gene Flow in the Process of Speciation: An Efficient Maximum-Likelihood Method for the Isolation-with-Initial-Migration Model , 2017, Genetics.

[8]  Matthias Steinrücken,et al.  Computing the joint distribution of the total tree length across loci in populations with variable size. , 2016, Theoretical population biology.

[9]  M. Uyenoyama,et al.  Genealogical histories in structured populations. , 2015, Theoretical population biology.

[10]  Chunhua Ma,et al.  The Coalescent in Peripatric Metapopulations , 2015, J. Appl. Probab..

[11]  Martin Chmelik,et al.  Efficient Strategies for Calculating Blockwise Likelihoods Under the Coalescent , 2015, Genetics.

[12]  Asger Hobolth,et al.  Markovian approximation to the finite loci coalescent with recombination along multiple sequences. , 2014, Theoretical population biology.

[13]  N. Kurt,et al.  A new coalescent for seed-bank models , 2014, 1411.4747.

[14]  Jason Schweinsberg Rigorous results for a population model with selection II: genealogy of the population , 2014, 1507.00394.

[15]  M. Birkner,et al.  Statistical Properties of the Site-Frequency Spectrum Associated with Λ-Coalescents , 2013, Genetics.

[16]  Michael M. Desai,et al.  Genetic Diversity and the Structure of Genealogies in Rapidly Adapting Populations , 2012, Genetics.

[17]  Oskar Hallatschek,et al.  Genealogies of rapidly adapting populations , 2012, Proceedings of the National Academy of Sciences.

[18]  G. Kersting The asymptotic distribution of the length of Beta-coalescent trees , 2011, 1107.2855.

[19]  A. Hobolth,et al.  Summary Statistics for Endpoint-Conditioned Continuous-Time Markov Chains , 2011, Journal of Applied Probability.

[20]  R. J. Harrison,et al.  A General Method for Calculating Likelihoods Under the Coalescent Process , 2011, Genetics.

[21]  J. Hey Isolation with migration models for more than two populations. , 2010, Molecular biology and evolution.

[22]  J. Wakeley,et al.  A coalescent process with simultaneous multiple mergers for approximating the gene genealogies of many marine organisms. , 2008, Theoretical population biology.

[23]  J. Wakeley Coalescent Theory: An Introduction , 2008 .

[24]  N. Berestycki,et al.  Small-time behavior of beta coalescents , 2006, math/0601032.

[25]  M. Drmota,et al.  Asymptotic results concerning the total branch length of the Bolthausen-Sznitman coalescent , 2007 .

[26]  C. Goldschmidt,et al.  Asymptotics of the allele frequency spectrum associated with the Bolthausen-Sznitman coalescent , 2007, 0706.2808.

[27]  Jean-François Delmas,et al.  Asymptotic results on the length of coalescent trees , 2007, 0706.0204.

[28]  John Wakeley,et al.  Coalescent Processes When the Distribution of Offspring Number Among Individuals Is Highly Skewed , 2006, Genetics.

[29]  Christina Goldschmidt,et al.  Random Recursive Trees and the Bolthausen-Sznitman Coalesent , 2005, math/0502263.

[30]  E. Árnason,et al.  Extent of mitochondrial DNA sequence variation in Atlantic cod from the Faroe Islands: a resolution of gene genealogy , 2003, Heredity.

[31]  Jason Schweinsberg Coalescent processes obtained from supercritical Galton-Watson processes , 2003 .

[32]  M. Kimmel,et al.  A note on distributions of times to coalescence, under time-dependent population size. , 2003, Theoretical population biology.

[33]  R. Durrett Probability Models for DNA Sequence Evolution , 2002 .

[34]  Martin Möhle,et al.  A Classification of Coalescent Processes for Haploid Exchangeable Population Models , 2001 .

[35]  S. Sagitov The general coalescent with asynchronous mergers of ancestral lines , 1999, Journal of Applied Probability.

[36]  J. Pitman Coalescents with multiple collisions , 1999 .

[37]  Churchill,et al.  A Markov Chain Model of Coalescence with Recombination , 1997, Theoretical population biology.

[38]  Y. Fu,et al.  Statistical properties of segregating sites. , 1995, Theoretical population biology.

[39]  N. U. Prabhu,et al.  On the Ruin Problem of Collective Risk Theory , 1961 .