Global Carbon Budget 2018

Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1, SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of 0.5 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017, ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018.

[1]  Tomoko Hasegawa,et al.  Harmonization of Global Land-Use Change and Management for the Period 850–2100 (LUH2) for CMIP6 , 2020 .

[2]  V. Brovkin,et al.  The Global Methane Budget 2000–2017 , 2016, Earth System Science Data.

[3]  Nathan Collier,et al.  The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty , 2019, Journal of Advances in Modeling Earth Systems.

[4]  Chris Blanton,et al.  The GFDL Global Ocean and Sea Ice Model OM4.0: Model Description and Simulation Features , 2019, Journal of Advances in Modeling Earth Systems.

[5]  Christopher J. Smith,et al.  Estimating and tracking the remaining carbon budget for stringent climate targets , 2019, Nature.

[6]  A. Voldoire,et al.  Evaluation of an Online Grid‐Coarsening Algorithm in a Global Eddy‐Admitting Ocean Biogeochemical Model , 2019, Journal of Advances in Modeling Earth Systems.

[7]  C. Mejia,et al.  LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO2 over the global ocean , 2019, Geoscientific Model Development.

[8]  T. Ilyina,et al.  Decadal trends in the ocean carbon sink , 2019, Proceedings of the National Academy of Sciences.

[9]  P. Ciais,et al.  Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions , 2019, Earth System Science Data.

[10]  Alexander J. Winkler,et al.  Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1.2) and Its Response to Increasing CO2 , 2019, Journal of advances in modeling earth systems.

[11]  J. Canadell,et al.  Drivers of declining CO2 emissions in 18 developed economies , 2019, Nature Climate Change.

[12]  Robbie M. Andrew,et al.  Global CO2 emissions from cement production, 1928–2018 , 2018, Earth System Science Data.

[13]  Atul K. Jain,et al.  Global Carbon Budget 2016 , 2016 .

[14]  Corinne Le Quéré,et al.  Global energy growth is outpacing decarbonization , 2018, Environmental Research Letters.

[15]  G. Peters,et al.  Emissions are still rising: ramp up the cuts , 2018, Nature.

[16]  Qiang Zhang,et al.  New dynamics of energy use and CO2 emissions in China , 2018, 1811.09475.

[17]  Xin Lin,et al.  On the impact of recent developments of the LMDz atmospheric general circulation model on the simulation of CO2 transport , 2018, Geoscientific Model Development.

[18]  Forrest M. Hoffman,et al.  The International Land Model Benchmarking (ILAMB) System: Design, Theory, and Implementation , 2018, Journal of Advances in Modeling Earth Systems.

[19]  E. Kort,et al.  Global atmospheric CO2 inverse models converging on neutral tropical land exchange but diverging on fossil fuel and atmospheric growth rate , 2018 .

[20]  J. Canadell,et al.  Lower land-use emissions responsible for increased net land carbon sink during the slow warming period , 2018, Nature Geoscience.

[21]  R. Andrew Global CO2 Emissions from Cement Production , 2018 .

[22]  Benjamin Smith,et al.  A new version of the CABLE land surface model (Subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis , 2018, Geoscientific Model Development.

[23]  P. Patra,et al.  Improved Chemical Tracer Simulation by MIROC4.0-based Atmospheric Chemistry-Transport Model (MIROC4-ACTM) , 2018 .

[24]  M. Long,et al.  Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport , 2018, Nature Geoscience.

[25]  F. Joos,et al.  A Bayesian ensemble data assimilation to constrain model parameters and land-use carbon emissions , 2018 .

[26]  S. Zaehle,et al.  How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO 2 data , 2018 .

[27]  K. Six,et al.  Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2 , 2018, Nature Climate Change.

[28]  C. Langlais,et al.  The Fate of Carbon and Nutrients Exported Out of the Southern Ocean , 2017, Global Biogeochemical Cycles.

[29]  T. Ilyina,et al.  Current and Future Decadal Trends in the Oceanic Carbon Uptake Are Dominated by Internal Variability , 2017 .

[30]  Benjamin Smith,et al.  A new version of the CABLE land surface model (Subversion revision r4546), incorporatingland use and land cover change, woody vegetation demography and a novel optimisation-basedapproach to plant coordination of electron transport and carboxylation capacity-limitedphotosynthesis , 2017 .

[31]  P. Patra,et al.  Implications of overestimated anthropogenic CO2 emissions on East Asian and global land CO2 flux inversion , 2017, Geoscience Letters.

[32]  Yi Y. Liu,et al.  Land-use and land-cover change carbon emissions between 1901 and 2012 constrained by biomass observations , 2017, Biogeosciences.

[33]  J. Canadell,et al.  Towards real-time verification of CO2 emissions , 2017, Nature Climate Change.

[34]  Glen P. Peters,et al.  Warning signs for stabilizing global CO2 emissions , 2017 .

[35]  R. Houghton,et al.  Tropical forests are a net carbon source based on aboveground measurements of gain and loss , 2017, Science.

[36]  P. Ciais,et al.  A representation of the phosphorus cycle for ORCHIDEE (revision 4520) , 2017 .

[37]  P. Friedlingstein,et al.  Emission budgets and pathways consistent with limiting warming to 1.5 °C , 2017 .

[38]  J. Randerson,et al.  Global fire emissions estimates during 1997–2016 , 2017 .

[39]  F. Woodward,et al.  The impact of alternative trait-scaling hypotheses for the maximum photosynthetic carboxylation rate (Vcmax ) on global gross primary production. , 2017, The New phytologist.

[40]  S. Dekker,et al.  Per-capita estimations of long-term historical land use and the consequences for global change research , 2017 .

[41]  Robbie M. Andrew,et al.  Supplementary material to "Global CO2 Emissions from Cement Production" , 2017 .

[42]  A. Tsuruta,et al.  The CarbonTracker Data Assimilation Shell (CTDAS) v1.0 : Implementation and global carbon balance 2001-2015 , 2017 .

[43]  A M Michalak,et al.  Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions , 2017, Scientific Reports.

[44]  Daniel S. Goll,et al.  ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation , 2017 .

[45]  T. Ilyina,et al.  Incorporating a prognostic representation of marine nitrogen fixers into the global ocean biogeochemical model HAMOCC , 2017 .

[46]  Richard A. Houghton,et al.  Global and regional fluxes of carbon from land use and land cover change 1850–2015 , 2017 .

[47]  T. Hengl,et al.  Mapping the global depth to bedrock for land surface modeling , 2017 .

[48]  M. Holzer,et al.  Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning , 2017, Nature.

[49]  Philippe Ciais,et al.  Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed , 2017 .

[50]  P. Alton Retrieval of seasonal Rubisco-limited photosynthetic capacity at global FLUXNET sites from hyperspectral satellite remote sensing: Impact on carbon modelling , 2017 .

[51]  A. Ducharne,et al.  ORCHIDEE-MICT ( v 8 . 4 . 1 ) , a land surface model for the high-latitudes : model description and validation , 2017 .

[52]  E. Stehfest,et al.  Anthropogenic land use estimates for the Holocene – HYDE 3.2 , 2016 .

[53]  F. Joos,et al.  20th century changes in carbon isotopes and water-use efficiency: tree-ring-based evaluation of the CLM4.5 and LPX-Bern models , 2016 .

[54]  Claus Pade,et al.  Substantial global carbon uptake by cement carbonation , 2016 .

[55]  P. Cox,et al.  Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2 , 2016, Nature.

[56]  M. Herold,et al.  An empirical spatiotemporal description of the global surface-atmosphere carbon fluxes: opportunities and data limitations , 2016 .

[57]  Pieter P. Tans,et al.  Upward revision of global fossil fuel methane emissions based on isotope database , 2016, Nature.

[58]  P. Landschützer,et al.  Decadal variations and trends of the global ocean carbon sink , 2016 .

[59]  Jacqueline Boutin,et al.  A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT) , 2016 .

[60]  K. Assmann,et al.  Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1) , 2016 .

[61]  Glen P. Peters,et al.  Uncertainties around reductions in China[rsquor]s coal use and CO2 emissions , 2016 .

[62]  P. Ciais,et al.  The compact Earth system model OSCAR v2.2: description and first results , 2016 .

[63]  R. Betts,et al.  El Nino and a record CO2 rise , 2016 .

[64]  Arief Wijaya,et al.  An integrated pan‐tropical biomass map using multiple reference datasets , 2016, Global change biology.

[65]  C. Justice,et al.  The collection 6 MODIS active fire detection algorithm and fire products , 2016, Remote sensing of environment.

[66]  Keywan Riahi,et al.  Differences between carbon budget estimates unravelled , 2016 .

[67]  Keith Lindsay,et al.  Timescales for detection of trends in the ocean carbon sink , 2016, Nature.

[68]  D. Wolf-Gladrow,et al.  Iron fertilisation and century-scale effects of open ocean dissolution of olivine in a simulated CO2 removal experiment , 2016 .

[69]  R. Warren,et al.  Literature Review of the Potential of “Blue Carbon” Activities to Reduce Emissions , 2016 .

[70]  PeterKöhler JudithHauck,et al.  Iron fertilisation and century-scale effects of open ocean dissolution of olivine in a simulated CO 2 removal experiment , 2016 .

[71]  Glen P. Peters,et al.  Reaching peak emissions , 2016 .

[72]  J. Shutler,et al.  Data-based estimates of the ocean carbon sink variability – first results of the Surface Ocean pCO2 Mapping intercomparison (SOCOM) , 2015 .

[73]  Atul K. Jain,et al.  Global Carbon Budget 2015 , 2015 .

[74]  Frédéric Chevallier,et al.  On the statistical optimality of CO 2 atmospheric inversions assimilating CO 2 column retrievals , 2015 .

[75]  A. Barbosa‐Póvoa Supply chain , 2015, 2015 International Conference on Industrial Engineering and Systems Management (IESM).

[76]  T. Ziehn,et al.  The carbon cycle in the Australian Community Climate and Earth System Simulator (ACCESS-ESM1) – Part 1: Model description and pre-industrial simulation , 2015 .

[77]  Taro Takahashi,et al.  The reinvigoration of the Southern Ocean carbon sink , 2015, Science.

[78]  Atul K. Jain,et al.  Increased influence of nitrogen limitation on CO2 emissions from future land use and land use change , 2015 .

[79]  V. Brovkin,et al.  Strong dependence of CO2 emissions from anthropogenic land cover change on initial land cover and soil carbon parametrization , 2015 .

[80]  P. Ciais,et al.  Reduced carbon emission estimates from fossil fuel combustion and cement production in China , 2015, Nature.

[81]  Olivier Aumont,et al.  PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies , 2015 .

[82]  Joe R. Melton,et al.  Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0 , 2015 .

[83]  H. Douville,et al.  Improving the ISBA CC land surface model simulation of water and carbon fluxes and stocks over the Amazon forest , 2015 .

[84]  Dylan B. A. Jones,et al.  An intercomparison of inverse models for estimating sources and sinks of CO2 using GOSAT measurements , 2015 .

[85]  E. Hansis,et al.  Relevance of methodological choices for accounting of land use change carbon fluxes , 2015 .

[86]  C. Kobayashi,et al.  The JRA-55 Reanalysis: General Specifications and Basic Characteristics , 2015 .

[87]  D. Schimel,et al.  Effect of increasing CO2 on the terrestrial carbon cycle , 2014, Proceedings of the National Academy of Sciences.

[88]  John B. Miller,et al.  Terrestrial cycling of (CO2)-C-13 by photosynthesis, respiration, and biomass burning in SiBCASA , 2014 .

[89]  J. Fyfe,et al.  Wind-driven changes in the ocean carbon sink , 2014 .

[90]  R. Houghton,et al.  Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty , 2014 .

[91]  Corinne Le Quéré,et al.  Persistent growth of CO2 emissions and implications for reaching climate targets , 2014 .

[92]  Thomas Raddatz,et al.  Comparing the influence of net and gross anthropogenic land-use and land-cover changes on the carbon cycle in the MPI-ESM , 2014 .

[93]  M. Heimann,et al.  Interannual sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme , 2014 .

[94]  P. Landschützer,et al.  Recent variability of the global ocean carbon sink , 2014 .

[95]  M. Telszewski,et al.  A Global Surface Ocean fCO2 Climatology Based on a Feed-Forward Neural Network , 2014 .

[96]  T. DeVries The oceanic anthropogenic CO2 sink: Storage, air‐sea fluxes, and transports over the industrial era , 2014 .

[97]  F. Achard,et al.  Determination of tropical deforestation rates and related carbon losses from 1990 to 2010 , 2014, Global change biology.

[98]  Yi Y. Liu,et al.  Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle , 2014, Nature.

[99]  R. Houghton,et al.  Terminology as a key uncertainty in net land use and land cover change carbon flux estimates , 2014 .

[100]  P. Jones,et al.  Updated high‐resolution grids of monthly climatic observations – the CRU TS3.10 Dataset , 2014 .

[101]  H. Tian,et al.  North American terrestrial CO2 uptake largely offset by CH4 and N2O emissions: toward a full accounting of the greenhouse gas budget , 2014, Climatic Change.

[102]  D. Higdon,et al.  A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission , 2014 .

[103]  A. Manning,et al.  Studies of Recent Changes in Atmospheric O 2 Content , 2014 .

[104]  Ranga B. Myneni,et al.  Chapter 6: Carbon and Other Biogeochemical Cycles , 2014 .

[105]  Patrick Heimbach,et al.  North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states , 2014 .

[106]  B. Elberling,et al.  A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region , 2013 .

[107]  Atul K. Jain,et al.  Carbon dynamics in the Amazonian Basin: Integration of eddy covariance and ecophysiological data with a land surface model , 2013 .

[108]  Thomas S. Bianchi,et al.  The changing carbon cycle of the coastal ocean , 2013, Nature.

[109]  Benjamin Smith,et al.  Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model , 2013 .

[110]  M. Torn,et al.  The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4 , 2013 .

[111]  Y. Niwa,et al.  Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. , 2013 .

[112]  Peter Bergamaschi,et al.  Three decades of global methane sources and sinks , 2013 .

[113]  R. Houghton,et al.  Bias in the attribution of forest carbon sinks , 2013 .

[114]  A. Pitman,et al.  The impact of nitrogen and phosphorous limitation on the estimated terrestrial carbon balance and warming of land use change over the last 156 yr , 2013 .

[115]  Corinne Le Quéré,et al.  Combined constraints on global ocean primary production using observations and models , 2013 .

[116]  Jean-Marc Molines,et al.  Eddy compensation and controls of the enhanced sea‐to‐air CO2 flux during positive phases of the Southern Annular Mode , 2013 .

[117]  Atul K. Jain,et al.  CO2 emissions from land‐use change affected more by nitrogen cycle, than by the choice of land‐cover data , 2013, Global change biology.

[118]  Jacqueline Boutin,et al.  An update to the Surface Ocean CO2 Atlas (SOCAT version 2) , 2013 .

[119]  Terminology as a key uncertainty in net land use flux estimates , 2013 .

[120]  Philippe Ciais,et al.  Anthropogenic perturbation of the carbon fluxes from land to ocean , 2013 .

[121]  F. Joos,et al.  Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios , 2013 .

[122]  Corinne Le Quéré,et al.  Anthropogenic CO2 emissions , 2013 .

[123]  A. Stavert,et al.  Reply to 'Anthropogenic CO 2 emissions' , 2013 .

[124]  V. Brovkin,et al.  Representation of natural and anthropogenic land cover change in MPI‐ESM , 2013 .

[125]  P. Ciais,et al.  A theoretical framework for the net land-to-atmosphere CO 2 flux and its implications in the definition of "emissions from land-use change" , 2013 .

[126]  Hongmei Li,et al.  Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI‐Earth system model in different CMIP5 experimental realizations , 2013 .

[127]  Glen P. Peters,et al.  A MULTI-REGION INPUT–OUTPUT TABLE BASED ON THE GLOBAL TRADE ANALYSIS PROJECT DATABASE (GTAP-MRIO) , 2013 .

[128]  J. Randerson,et al.  Analysis of daily, monthly, and annual burned area using the fourth‐generation global fire emissions database (GFED4) , 2013 .

[129]  Are Olsen,et al.  Global surface-ocean p CO 2 and sea–air CO 2 flux variability from an observation-driven ocean mixed-layer scheme , 2013 .

[130]  Yoshiki Yamagata,et al.  Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model , 2013 .

[131]  P. Cox,et al.  Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability , 2013, Nature.

[132]  Michael Schulz,et al.  Information from paleoclimate archives , 2013 .

[133]  Corinne Le Quéré,et al.  The challenge to keep global warming below 2 °C , 2013 .

[134]  Zong-Liang Yang,et al.  Technical description of version 4.5 of the Community Land Model (CLM) , 2013 .

[135]  M. Gehlen,et al.  Skill assessment of three earth system models with common marine biogeochemistry , 2013, Climate Dynamics.

[136]  Peter R. Oke,et al.  Evaluation of a near-global eddy-resolving ocean model , 2012 .

[137]  Corinne Le Quéré,et al.  Carbon emissions from land use and land-cover change , 2012 .

[138]  Atul K. Jain,et al.  The global carbon budget 1959-2011 , 2012 .

[139]  J. Randerson,et al.  Global burned area and biomass burning emissions from small fires , 2012 .

[140]  J. Randerson,et al.  Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations , 2012 .

[141]  Christoph Heinze,et al.  Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM) , 2012 .

[142]  Sonia Yeh,et al.  Timing of carbon emissions from global forest clearance , 2012 .

[143]  G. Peters,et al.  A synthesis of carbon in international trade , 2012 .

[144]  Taro Takahashi,et al.  Global ocean carbon uptake: magnitude, variability and trends , 2012 .

[145]  Jacqueline Boutin,et al.  A uniform, quality controlled Surface Ocean CO2 Atlas (SOCAT) , 2012 .

[146]  J. B. Miller,et al.  Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years , 2012, Nature.

[147]  P. Ciais,et al.  Carbon Cycle Uncertainty in REgional Carbon Cycle Assessment and Processes (RECCAP) , 2012 .

[148]  Scott C. Doney,et al.  Global ocean storage of anthropogenic carbon , 2012 .

[149]  M. Gehlen,et al.  Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change , 2012 .

[150]  P. Ciais,et al.  Archived Version from Ncdocks Institutional Repository a Synthesis of Carbon Dioxide Emissions from Fossil-fuel Combustion Title: a Synthesis of Carbon Dioxide Emissions from Fossil-fuel Combustion a Synthesis of Carbon Dioxide Emissions from Fossil-fuel Combustion , 2022 .

[151]  Michael J. Prather,et al.  Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry , 2012 .

[152]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[153]  A. Ito,et al.  Use of a process-based model for assessing the methane budgets of global terrestrial ecosystems and evaluation of uncertainty , 2012 .

[154]  C. Jones,et al.  Development and evaluation of an Earth-System model - HadGEM2 , 2011 .

[155]  Steven J Davis,et al.  The supply chain of CO2 emissions , 2011, Proceedings of the National Academy of Sciences.

[156]  Philippe Ciais,et al.  Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions , 2011 .

[157]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics , 2011 .

[158]  P. Cox,et al.  The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes , 2011 .

[159]  E. Stehfest,et al.  Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands , 2011 .

[160]  Niklaus E. Zimmermann,et al.  Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO 2 airborne fraction , 2011 .

[161]  Glen P. Peters,et al.  CONSTRUCTING AN ENVIRONMENTALLY-EXTENDED MULTI-REGIONAL INPUT–OUTPUT TABLE USING THE GTAP DATABASE , 2011 .

[162]  H. Tian,et al.  Net exchanges of CO2, CH4, and N2O between China's terrestrial ecosystems and the atmosphere and their contributions to global climate warming , 2011 .

[163]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[164]  Corinne Le Quéré,et al.  Economic value of improved quantification in global sources and sinks of carbon dioxide , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[165]  M. Dubey,et al.  The atmospheric signature of carbon capture and storage , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[166]  C. Weber,et al.  Growth in emission transfers via international trade from 1990 to 2008 , 2011, Proceedings of the National Academy of Sciences.

[167]  Ahmad Al Bitar,et al.  An Analytical Model of Evaporation Efficiency for Unsaturated Soil Surfaces with an Arbitrary Thickness , 2011 .

[168]  Ray Leuning,et al.  Diagnosing errors in a land surface model (CABLE) in the time and frequency domains , 2011 .

[169]  Philip Lewis,et al.  An assessment of the MODIS collection 5 leaf area index product for a region of mixed coniferous forest , 2011 .

[170]  Deborah K. Smith,et al.  A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications , 2011 .

[171]  S. Doney,et al.  Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere , 2011 .

[172]  Patrick M. Crill,et al.  Freshwater Methane Emissions Offset the Continental Carbon Sink , 2011, Science.

[173]  G. Marland,et al.  Monthly, global emissions of carbon dioxide from fossil fuel consumption , 2011 .

[174]  Steven J. Davisa,et al.  The supply chain of CO 2 emissions , 2011 .

[175]  Corinne Le Quéré,et al.  Rapid growth in CO2 emissions after the 2008-2009 global financial crisis , 2011 .

[176]  A. Borges,et al.  5.04 – Carbon Dioxide and Methane Dynamics in Estuaries , 2011 .

[177]  Kees Klein Goldewijk,et al.  The HYDE 3.1 spatially explicit database of human‐induced global land‐use change over the past 12,000 years , 2011 .

[178]  E. Buitenhuis,et al.  Biogeochemical fluxes through microzooplankton , 2010 .

[179]  Philippe Ciais,et al.  Update on CO2 emissions , 2010 .

[180]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[181]  S. Seneviratne,et al.  Recent decline in the global land evapotranspiration trend due to limited moisture supply , 2010, Nature.

[182]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[183]  G. Laruelle,et al.  Evaluation of sinks and sources of CO2 in the global coastal ocean using a spatially‐explicit typology of estuaries and continental shelves , 2010 .

[184]  A. Borges,et al.  Carbon dioxide and methane dynamics in estuaries , 2010 .

[185]  Philippe Ciais,et al.  Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations , 2010 .

[186]  S. Davis,et al.  Consumption-based accounting of CO2 emissions , 2010, Proceedings of the National Academy of Sciences.

[187]  Andrew D. Friend,et al.  Carbon and nitrogen cycle dynamics in the O‐CN land surface model: 1. Model description, site‐scale evaluation, and sensitivity to parameter estimates , 2010 .

[188]  Pierre Friedlingstein,et al.  Carbon and nitrogen cycle dynamics in the O‐CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance , 2010 .

[189]  A. Arneth,et al.  Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation , 2010 .

[190]  Taro Takahashi,et al.  Variability of global net sea–air CO2 fluxes over the last three decades using empirical relationships , 2010 .

[191]  Erkki Tomppo,et al.  A report to the food and agriculture organization of the united nations (FAO) in support of sampling study for National Forestry Resources Monitoring and Assessment (NAFORMA) in Tanzania , 2010 .

[192]  J. Randerson,et al.  Assessing variability and long-term trends in burned area by merging multiple satellite fire products , 2009 .

[193]  M. Claussen,et al.  Effects of anthropogenic land cover change on the carbon cycle of the last millennium , 2009 .

[194]  Corinne Le Quéré,et al.  Trends in the sources and sinks of carbon dioxide , 2009 .

[195]  S. Khatiwala,et al.  Reconstruction of the history of anthropogenic CO2 concentrations in the ocean , 2009, Nature.

[196]  Vivek K. Arora,et al.  The Effect of Terrestrial Photosynthesis Down Regulation on the Twentieth-Century Carbon Budget Simulated with the CCCma Earth System Model , 2009 .

[197]  Andrew J. Watson,et al.  Corrigendum to "Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans" [Deep Sea Res. II 56 (2009) 554-577] , 2009 .

[198]  John M. Melack,et al.  Lakes and reservoirs as regulators of carbon cycling and climate , 2009 .

[199]  Rachel M. Law,et al.  A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere , 2009 .

[200]  Andreas Richter,et al.  The boundless carbon cycle , 2009 .

[201]  G. Myhre,et al.  A fast method for updating global fossil fuel carbon dioxide emissions , 2009 .

[202]  Christoph Heinze,et al.  An isopycnic ocean carbon cycle model , 2009 .

[203]  A. Gnanadesikan,et al.  Regional impacts of iron-light colimitation in a global biogeochemical model , 2009 .

[204]  Josep G. Canadell,et al.  Current and future CO 2 emissions from drained peatlands in Southeast Asia , 2009 .

[205]  Bas Eickhout,et al.  The importance of three centuries of land-use change for the global and regional terrestrial carbon cycle , 2009 .

[206]  E. Hertwich,et al.  Carbon footprint of nations: a global, trade-linked analysis. , 2009, Environmental science & technology.

[207]  George C. Hurtt,et al.  Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink , 2009 .

[208]  V. Brovkin,et al.  Atmospheric lifetime of fossil-fuel carbon dioxide , 2009 .

[209]  P. Cox,et al.  Impact of changes in diffuse radiation on the global land carbon sink , 2009, Nature.

[210]  K. Lindsay,et al.  Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate and atmospheric dust , 2009 .

[211]  W. Knorr,et al.  Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global‐scale terrestrial biosphere models , 2009 .

[212]  Gregg Marland,et al.  How Uncertain Are Estimates of CO2 Emissions? , 2009 .

[213]  Andrew J. Watson,et al.  Corrigendum to Climatological mean and decadal change in surface ocean pCO2, and net sea―air CO2 flux over the global oceans , 2009 .

[214]  Corinne Le Quéré,et al.  Closing the global budget for CO2 , 2009 .

[215]  J. Randerson,et al.  Climate regulation of fire emissions and deforestation in equatorial Asia , 2008, Proceedings of the National Academy of Sciences.

[216]  I. C. Prentice,et al.  Evaluation of the terrestrial carbon cycle, future plant geography and climate‐carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs) , 2008 .

[217]  Benjamin Smith,et al.  Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space , 2008 .

[218]  K. R. Arrigo,et al.  Impacts of Atmospheric Anthropogenic Nitrogen on the Open Ocean , 2008, Science.

[219]  Gregg Marland,et al.  Uncertainties in Accounting for CO2 From Fossil Fuels , 2008 .

[220]  Gregg Marland,et al.  China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production , 2008 .

[221]  F. Joos,et al.  Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years , 2008, Proceedings of the National Academy of Sciences.

[222]  E. Hertwich,et al.  Post-Kyoto greenhouse gas inventories: production versus consumption , 2008 .

[223]  中華人民共和国国家統計局 中华人民共和国国民经济和社会发展统计公报 = Statistical communique of The People's Republic of China on the national economic and social development , 2008 .

[224]  G. Marland Uncertainties in Accounting for CO 2 From Fossil Fuels , 2008 .

[225]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .

[226]  Corinne Le Quéré,et al.  Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks , 2007, Proceedings of the National Academy of Sciences.

[227]  Gregg Marland,et al.  The North American Carbon Budget and Implications for the Global Carbon Cycle , 2007 .

[228]  R. Dickinson,et al.  Couplings between changes in the climate system and biogeochemistry , 2007 .

[229]  Philippe Ciais,et al.  Weak Northern and Strong Tropical Land Carbon Uptake from Vertical Profiles of Atmospheric CO2 , 2007, Science.

[230]  J. Canadell,et al.  Global and regional drivers of accelerating CO2 emissions , 2007, Proceedings of the National Academy of Sciences.

[231]  J. Sarmiento,et al.  Correction to “A joint atmosphere‐ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global‐scale fluxes” , 2007 .

[232]  C. Sweeney,et al.  Constraining global air‐sea gas exchange for CO2 with recent bomb 14C measurements , 2007 .

[233]  G. P. Zimmerman,et al.  The first state of the carbon cycle report (SOCCR): The North American carbon budget and implications for the global carbon cycle. , 2007 .

[234]  J. Downing,et al.  Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget , 2007, Ecosystems.

[235]  S. Bony,et al.  The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection , 2006 .

[236]  L. Bopp,et al.  Globalizing results from ocean in situ iron fertilization studies , 2006 .

[237]  Tsutomu Ikeda,et al.  Biogeochemical fluxes through mesozooplankton , 2006 .

[238]  K. Lindsay,et al.  Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean , 2006 .

[239]  Martin Jung,et al.  Exploiting synergies of global land cover products for carbon cycle modeling , 2006 .

[240]  A. Manning,et al.  Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network , 2006 .

[241]  Gregg Marland,et al.  Energy, industry, and waste management activities : an introduction to CO2 emissions from fossil fuels. Part II Overview , 2006 .

[242]  Philippe Bousquet,et al.  Inferring CO2 sources and sinks from satellite observations: Method and application to TOVS data , 2005 .

[243]  I. C. Prentice,et al.  A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system , 2005 .

[244]  A. Mariotti,et al.  Terrestrial mechanisms of interannual CO2 variability , 2005 .

[245]  C. Rödenbeck Estimating CO2 sources and sinks from atmospheric mixing ratio measurements using a global inversion of atmospheric transport , 2005 .

[246]  F. Woodward,et al.  Vegetation dynamics – simulating responses to climatic change , 2004, Biological reviews of the Cambridge Philosophical Society.

[247]  A. Jacobson,et al.  A joint atmosphere‐ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global‐scale fluxes , 2007 .

[248]  Nicolas Gruber,et al.  A joint atmosphere‐ocean inversion for surface fluxes of carbon dioxide: 2. Regional results , 2003 .

[249]  Sander Houweling,et al.  CO 2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport , 2003 .

[250]  Yoram J. Kaufman,et al.  An Enhanced Contextual Fire Detection Algorithm for MODIS , 2003 .

[251]  P. Ciais,et al.  Amplifying effects of land‐use change on future atmospheric CO2 levels , 2003 .

[252]  I. C. Prentice,et al.  Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model , 2003 .

[253]  J. Sarmiento,et al.  Anthropogenic CO2 Uptake by the Ocean Based on the Global Chlorofluorocarbon Data Set , 2003, Science.

[254]  R. Houghton Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850 – 2000 , 2003 .

[255]  Kevin E. Trenberth,et al.  Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations , 2002 .

[256]  X. Yin Responses of leaf nitrogen concentration and specific leaf area to atmospheric CO2 enrichment: a retrospective synthesis across 62 species , 2002 .

[257]  Robert J. Scholes,et al.  The Carbon Cycle and Atmospheric Carbon Dioxide , 2001 .

[258]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[259]  K. Shine Radiative Forcing of Climate Change , 2000 .

[260]  G. Marland,et al.  Carbon dioxide emissions from fossil‐fuel use, 1751–1950 , 1999 .

[261]  Ranga B. Myneni,et al.  Estimation of global leaf area index and absorbed par using radiative transfer models , 1997, IEEE Trans. Geosci. Remote. Sens..

[262]  F. Joos,et al.  Terrestrial carbon storage during the past 200 years: A Monte Carlo Analysis of CO2 data from ice core and atmospheric measurements , 1997 .

[263]  D. Etheridge,et al.  Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn , 1996 .

[264]  J. Houghton,et al.  Climate change 1995: the science of climate change. , 1996 .

[265]  Thomas M. Smith,et al.  A global land primary productivity and phytogeography model , 1995 .

[266]  Pieter P. Tans,et al.  Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record , 1995 .

[267]  J. Lloyd,et al.  On the temperature dependence of soil respiration , 1994 .

[268]  R. Pielke,et al.  Estimating the Soil Surface Specific Humidity , 1992 .

[269]  J. Houghton,et al.  Climate change : the IPCC scientific assessment , 1990 .

[270]  R. T. Watson,et al.  Greenhouse gases and aerosols , 1990 .

[271]  Judith Gurney BP Statistical Review of World Energy , 1985 .

[272]  Gregg Marland,et al.  Carbon dioxide emissions from fossil fuels: a procedure for estimation and results for 1950-1982 , 1984 .

[273]  Chris Chatfield,et al.  The Holt-Winters Forecasting Procedure , 1978 .

[274]  Carl Ekdahl,et al.  Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii , 1976 .

[275]  S S I T C H,et al.  Evaluation of Ecosystem Dynamics, Plant Geography and Terrestrial Carbon Cycling in the Lpj Dynamic Global Vegetation Model , 2022 .