cDNA microarray adaptive segmentation

DNA microarray technology has enabled biologists to study all the genes within an entire organism to obtain a global view of [email protected]? interaction and regulation. This technology has a great potential in obtaining a deep understanding of the functional organization of cells. This paper is concerned with improving the processes involved in the analysis of microarray image data. The main focus is to clarify an [email protected]?s feature space in an unsupervised manner. Rather than using the raw microarray image, it proposes to produce filtered versions of the image data by applying nonlinear anisotropic diffusion so that the dynamic range of the image could be increased and, therefore, a better ability of signal extraction could be achieved. In this paper, a novel segmentation algorithm is developed. This algorithm is based on the Cellular Neural Network computational paradigm integrated with median and anisotropic diffusion filters. The AnaLogic CNN Simulation Toolbox for MATLAB (InstantVision Toolboxes for MATLAB) is used during the segmentation process. Quantitative comparisons among the proposed methods and GenePix^(R) are carried out from both the objective and subjective points of view. It is shown that analogic algorithm integrated with Complex Diffusion filter is the best one to be applied to accomplish the segmentation.

[1]  Peter Bajcsy Gridline: automatic grid alignment DNA microarray scans , 2004, IEEE Transactions on Image Processing.

[2]  Zidong Wang,et al.  Microarray Image Analysis: An Algorithmic Approach , 2010 .

[3]  Abdo Abou Jaoude,et al.  Stochastic and nonlinear-based prognostic model , 2013 .

[4]  Xin Liu,et al.  Extraction of target fluorescence signal from in vivo background signal using image subtraction algorithm , 2012, International Journal of Automation and Computing.

[5]  J. Craig Venter,et al.  Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library , 1993, Nature Genetics.

[6]  Stan Z. Li,et al.  Markov Random Field Models in Computer Vision , 1994, ECCV.

[7]  Tamás Roska,et al.  CNN‐based spatio‐temporal nonlinear filtering and endocardial boundary detection in echocardiography , 1999, Int. J. Circuit Theory Appl..

[8]  Terence P. Speed,et al.  Comparison of Methods for Image Analysis on cDNA Microarray Data , 2002 .

[9]  Ajay N. Jain,et al.  Fully automatic quantification of microarray image data. , 2002, Genome research.

[10]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[11]  Tamás Roska,et al.  DYNAMIC ANALOGIC CNN ALGORITHMS FOR A COMPLEX RECOGNITION TASK—A FIRST STEP TOWARDS A BIONIC EYEGLASS† , 1996 .

[12]  Thomas Villmann,et al.  Neural networks and machine learning in bioinformatics - theory and applications , 2006, ESANN.

[13]  Geoffrey J. McLachlan,et al.  Analyzing Microarray Gene Expression Data , 2004 .

[14]  K. McGraw,et al.  Forming inferences about some intraclass correlation coefficients. , 1996 .

[15]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .

[16]  Yonghui Zhang,et al.  Resource Virtualization Model Using Hybrid-graph Representation and Converging Algorithm for Cloud Computing , 2013, Int. J. Autom. Comput..

[17]  A. Rak,et al.  GPU powered CNN simulator (SIMCNN) with graphical flow based programmability , 2008, 2008 11th International Workshop on Cellular Neural Networks and Their Applications.

[18]  P. Philominathan,et al.  Purcell’s swimmer revisited , 2012, Int. J. Autom. Comput..

[19]  Roger D. Boyle,et al.  New segmentation techniques for document image analysis , 1995, Image Vis. Comput..

[20]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[21]  Pekka Ruusuvuori,et al.  Evaluating the performance of microarray segmentation algorithms , 2006, Bioinform..

[22]  Musa H. Asyali,et al.  Segmentation of cDNA Microarray Spots Using Markov Random Field Modeling , 2005, Bioinform..

[23]  Nikolas P. Galatsanos,et al.  Mixture model analysis of DNA microarray images , 2005, IEEE Transactions on Medical Imaging.

[24]  Yehoshua Y. Zeevi,et al.  Image enhancement and denoising by complex diffusion processes , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Leon O. Chua,et al.  Computing with Front Propagation: Active Contour And Skeleton Models In Continuous-Time CNN , 1999, J. VLSI Signal Process..

[26]  R.S.H. Istepanian,et al.  Application of wavelet modulus maxima in microarray spots recognition , 2003, IEEE Transactions on NanoBioscience.

[27]  L. Hillier,et al.  Expressed sequence tags--ESTablishing bridges between genomes. , 1998, Trends in genetics : TIG.

[28]  Thomas Ried,et al.  Objective method of comparing DNA microarray image analysis systems. , 2004, BioTechniques.

[29]  Leon O. Chua,et al.  CNN: A Vision of Complexity , 1997 .

[30]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[31]  Partha S. Vasisht Computational Analysis of Microarray Data , 2003 .

[32]  G. Sagerer,et al.  Methods for automatic microarray image segmentation , 2003, IEEE Transactions on NanoBioscience.

[33]  Yehoshua Y. Zeevi,et al.  Complex Diffusion Processes for Image Filtering , 2001, Scale-Space.

[34]  J. M. Cruz,et al.  A 16 × 16 Cellular Neural Network Universal Chip: The First Complete Single-Chip Dynamic Computer Array with Distributed Memory and with Gray-Scale Input-Output , 1998 .

[35]  Mitsuo Gen,et al.  Fuzzy Methods for Voice-Based Person Authentication , 2004 .

[36]  Andrew Chi-Sing Leung,et al.  Parallelization of cellular neural networks on GPU , 2008, Pattern Recognit..

[37]  Daniel Morris,et al.  Blind Microarray Gridding: A New Framework , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[38]  Leon O. Chua,et al.  Spatial logic algorithms using basic morphological analogic CNN operations , 1996, Int. J. Circuit Theory Appl..

[39]  Haiping Ma,et al.  Handling multiple objectives with biogeography-based optimization , 2012, Int. J. Autom. Comput..

[40]  N. Lee,et al.  A concise guide to cDNA microarray analysis. , 2000, BioTechniques.

[41]  Klaus-Dieter Thoben,et al.  Integration of supply networks for customization with modularity in cloud and make-to-upgrade strategy , 2013 .

[42]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[43]  Wen-Liang Hwang,et al.  Segmenting Microarray Image Spots using an Active Contour Approach , 2007, 2007 IEEE International Conference on Image Processing.

[44]  Chandra Kambhamettu,et al.  A MICROARRAY IMAGE ANALYSIS SYSTEM BASED ON MULTIPLE-SNAKE , 2004 .

[45]  Hai-Jiao Guo,et al.  Design of optimal output disturbance cancellation controllers via loop transfer recovery , 2013 .

[46]  D. Bozinov Autonomous system for web-based microarray image analysis , 2003, IEEE Transactions on NanoBioscience.

[47]  Jörg Rahnenführer,et al.  Unsupervised technique for robust target separation and analysis of DNA microarray spots through adaptive pixel clustering , 2002, Bioinform..

[48]  Neil D. Lawrence,et al.  Bayesian processing of microarray images , 2003, 2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718).

[49]  K Fraser,et al.  Copasetic analysis: a framework for the blind analysis of microarray imagery. , 2004, Systems biology.

[50]  Tamás Roska,et al.  The CNN universal machine. I. The architecture , 1992, CNNA '92 Proceedings Second International Workshop on Cellular Neural Networks and Their Applications.

[51]  Kishor M. Bhurchandi,et al.  A 4-quadrant Curvelet Transform for Denoising Digital Images , 2013, Int. J. Autom. Comput..

[52]  Ernst Wit,et al.  Statistics for Microarrays : Design, Analysis and Inference , 2004 .

[53]  Jacques Cohen,et al.  Computer science and bioinformatics , 2005, CACM.

[54]  Leon O. Chua,et al.  The CNN paradigm , 1993 .

[55]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  Heng Zhao,et al.  Two-stage source reconstruction algorithm for bioluminescence tomography using hybrid FEM , 2012, Int. J. Autom. Comput..

[57]  Karlene A. Hoo,et al.  Stability analysis for closed-loop management of a reservoir based on identification of reduced-order nonlinear model , 2013 .

[58]  A. K. Whitchurch,et al.  Gene expression microarrays , 2002 .

[59]  S. K. Moore Making chips to probe genes , 2001 .

[60]  Tamás Roska,et al.  The CNN universal machine , 1993 .

[61]  G. Linan,et al.  ACE16K: a 128/spl times/128 focal plane analog processor with digital I/O , 2002, Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their Applications.

[62]  P Arena,et al.  Cellular neural networks for real-time DNA microarray analysis. , 2002, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[63]  R. Lyne,et al.  The transcriptional program of meiosis and sporulation in fission yeast , 2002, Nature Genetics.

[64]  A. Venetsanopoulos,et al.  A multichannel order-statistic technique for cDNA microarray image processing , 2004, IEEE Transactions on NanoBioscience.

[65]  J. Fleiss The design and analysis of clinical experiments , 1987 .

[66]  Stephen Yip,et al.  Whole-genome DNA and RNA sequencing in patients with metastatic colorectal cancer (mCRC). , 2014 .

[67]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[68]  Mohammad Izadikhah,et al.  Evaluation and ranking DMUs in the presence of both undesirable and ordinal factors in data envelopment analysis , 2012, Int. J. Autom. Comput..

[69]  Dov Stekel,et al.  Microarray Bioinformatics: Appendix: MIAME Glossary , 2003 .

[70]  Changle Zhou,et al.  From Biological Consciousness to Machine Consciousness: An Approach to Make Smarter Machines , 2013, Int. J. Autom. Comput..

[71]  Hideki Noda,et al.  MRF-based texture segmentation using wavelet decomposed images , 2000, Electronic Imaging.

[72]  Benjamin Pfaff,et al.  Handbook Of Image And Video Processing , 2016 .

[73]  P. Liatsis,et al.  MICROARRAY IMAGE ANALYSIS , 2002 .

[74]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[75]  S. Gygi,et al.  Correlation between Protein and mRNA Abundance in Yeast , 1999, Molecular and Cellular Biology.

[76]  D. Gerhold,et al.  It's the genes! EST access to human genome content , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[77]  Ning Li,et al.  The dynamics and bifurcation control of a singular biological economic model , 2012, Int. J. Autom. Comput..

[78]  Heng Zhao,et al.  All-optical quantitative framework for bioluminescence tomography with non-contact measurement , 2012, Int. J. Autom. Comput..

[79]  Leon O. Chua,et al.  CNN cloning template: connected component detector , 1990 .