RNA-binding proteins in bacteria

[1]  S. Woodson,et al.  Hfq chaperone brings speed dating to bacterial sRNA , 2018, Wiley interdisciplinary reviews. RNA.

[2]  Thorsten Bischler,et al.  Global Maps of ProQ Binding In Vivo Reveal Target Recognition via RNA Structure and Stability Control at mRNA 3' Ends. , 2018, Molecular cell.

[3]  S. Gorski,et al.  Bacterial RNA Biology on a Genome Scale. , 2018, Molecular cell.

[4]  David H Burkhardt,et al.  A Stress Response that Monitors and Regulates mRNA Structure Is Central to Cold Shock Adaptation. , 2018, Molecular cell.

[5]  Liying Meng,et al.  Transcriptome-wide discovery of coding and noncoding RNA-binding proteins , 2018, Proceedings of the National Academy of Sciences.

[6]  S. Gottesman,et al.  New aspects of RNA-based regulation by Hfq and its partner sRNAs. , 2018, Current opinion in microbiology.

[7]  P. Babitzke,et al.  Examination of Csr regulatory circuitry using epistasis analysis with RNA-seq (Epi-seq) confirms that CsrD affects gene expression via CsrA, CsrB and CsrC , 2018, Scientific Reports.

[8]  M. Meyer rRNA Mimicry in RNA Regulation of Gene Expression. , 2018, Microbiology spectrum.

[9]  A. Weixlbaumer,et al.  Structural Basis for NusA Stabilized Transcriptional Pausing , 2018, Molecular cell.

[10]  P. Dersch,et al.  Regulation of host-pathogen interactions via the post-transcriptional Csr/Rsm system. , 2018, Current opinion in microbiology.

[11]  Matthias W. Hentze,et al.  A brave new world of RNA-binding proteins , 2018, Nature Reviews Molecular Cell Biology.

[12]  C. Solano,et al.  The regulon of the RNA chaperone CspA and its auto-regulation in Staphylococcus aureus , 2018, Nucleic acids research.

[13]  Michael T. Wolfinger,et al.  Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa , 2017, Nucleic acids research.

[14]  B. Luisi,et al.  Analysis of the natively unstructured RNA/protein-recognition core in the Escherichia coli RNA degradosome and its interactions with regulatory RNA/Hfq complexes , 2017, Nucleic acids research.

[15]  Christopher A. Vakulskas,et al.  Global role of the bacterial post-transcriptional regulator CsrA revealed by integrated transcriptomics , 2017, Nature Communications.

[16]  V. Zhurkin,et al.  DNA–RNA interactions are critical for chromosome condensation in Escherichia coli , 2017, Proceedings of the National Academy of Sciences.

[17]  R. Sen,et al.  Rho Protein: Roles and Mechanisms. , 2017, Annual review of microbiology.

[18]  B. Luisi,et al.  Structural insights into RapZ-mediated regulation of bacterial amino-sugar metabolism , 2017, Nucleic acids research.

[19]  J. Vogel,et al.  A systematic analysis of the RNA-targeting potential of secreted bacterial effector proteins , 2017, Scientific Reports.

[20]  Jeffrey J. Gray,et al.  Acidic C-terminal domains autoregulate the RNA chaperone Hfq , 2017, eLife.

[21]  Daniel N. Wilson,et al.  Structural Basis for Ribosome Rescue in Bacteria. , 2017, Trends in biochemical sciences.

[22]  S. Gottesman,et al.  Hfq links translation repression to stress-induced mutagenesis in E. coli , 2017, Genes & development.

[23]  A. Westermann,et al.  RNA target profiles direct the discovery of virulence functions for the cold-shock proteins CspC and CspE , 2017, Proceedings of the National Academy of Sciences.

[24]  G. Storz,et al.  ProQ/FinO‐domain proteins: another ubiquitous family of RNA matchmakers? , 2017, Molecular microbiology.

[25]  A. Schedlbauer,et al.  RsgA couples the maturation state of the 30S ribosomal decoding center to activation of its GTPase pocket , 2017, Nucleic acids research.

[26]  T. Mielke,et al.  Structural basis for λN-dependent processive transcription antitermination , 2017, Nature Microbiology.

[27]  P. Cramer,et al.  Architecture of a transcribing-translating expressome , 2017, Science.

[28]  J. Glover,et al.  RNA Chaperones Step Out of Hfq's Shadow. , 2017, Trends in Microbiology.

[29]  J. Vogel,et al.  Molecular mechanism of mRNA repression in trans by a ProQ‐dependent small RNA , 2017, The EMBO journal.

[30]  G. Atkinson,et al.  Negative allosteric regulation of Enterococcus faecalis small alarmone synthetase RelQ by single-stranded RNA , 2017, Proceedings of the National Academy of Sciences.

[31]  Joseph H. Davis,et al.  Structure and dynamics of bacterial ribosome biogenesis , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[32]  Tamar Kahan,et al.  Host cell attachment elicits posttranscriptional regulation in infecting enteropathogenic bacteria , 2017, Science.

[33]  Jennifer A. Doudna,et al.  RNA-based recognition and targeting: sowing the seeds of specificity , 2017, Nature Reviews Molecular Cell Biology.

[34]  W. Winkler,et al.  LoaP is a broadly conserved antiterminator protein that regulates antibiotic gene clusters in Bacillus amyloliquefaciens , 2017, Nature Microbiology.

[35]  A. Bateman,et al.  Structure of the Escherichia coli ProQ RNA-binding protein , 2017, RNA.

[36]  C. Buchrieser,et al.  The Legionella pneumophila genome evolved to accommodate multiple regulatory mechanisms controlled by the CsrA-system , 2017, PLoS genetics.

[37]  Konrad U. Förstner,et al.  In Vivo Cleavage Map Illuminates the Central Role of RNase E in Coding and Non-coding RNA Pathways , 2017, Molecular cell.

[38]  D. Tollervey,et al.  Small RNA interactome of pathogenic E. coli revealed through crosslinking of RNase E , 2016, The EMBO journal.

[39]  L. Keffer-Wilkes,et al.  RNA modification enzyme TruB is a tRNA chaperone , 2016, Proceedings of the National Academy of Sciences.

[40]  S. Gottesman,et al.  C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA , 2016, Proceedings of the National Academy of Sciences.

[41]  Konrad U. Förstner,et al.  Grad-seq guides the discovery of ProQ as a major small RNA-binding protein , 2016, Proceedings of the National Academy of Sciences.

[42]  S. Gottesman,et al.  sRNA-Mediated Control of Transcription Termination in E. coli , 2016, Cell.

[43]  S. R. Kushner,et al.  Regulation of mRNA Decay in Bacteria. , 2016, Annual review of microbiology.

[44]  H. Margalit,et al.  Global Mapping of Small RNA-Target Interactions in Bacteria , 2016, Molecular cell.

[45]  A. MacMillan,et al.  Silencing of natural transformation by an RNA chaperone and a multitarget small RNA , 2016, Proceedings of the National Academy of Sciences.

[46]  R. Landick,et al.  Mechanisms of Bacterial Transcription Termination: All Good Things Must End. , 2016, Annual review of biochemistry.

[47]  C. Bond,et al.  Determinants of affinity and specificity in RNA-binding proteins. , 2016, Current opinion in structural biology.

[48]  Christopher A. Vakulskas,et al.  Antagonistic control of the turnover pathway for the global regulatory sRNA CsrB by the CsrA and CsrD proteins , 2016, Nucleic acids research.

[49]  R. Reinhardt,et al.  The CsrA-FliW network controls polar localization of the dual-function flagellin mRNA in Campylobacter jejuni , 2016, Nature Communications.

[50]  Konrad U. Förstner,et al.  APRICOT: an integrated computational pipeline for the sequence-based identification and characterization of RNA-binding proteins , 2016, bioRxiv.

[51]  Rolf Backofen,et al.  Global RNA recognition patterns of post‐transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo , 2016, The EMBO journal.

[52]  J. Vogel,et al.  Emerging roles of RNA modifications in bacteria. , 2016, Current opinion in microbiology.

[53]  Aixia Zhang,et al.  Hfq: the flexible RNA matchmaker. , 2016, Current opinion in microbiology.

[54]  F. Repoila,et al.  Fresh layers of RNA-mediated regulation in Gram-positive bacteria. , 2016, Current opinion in microbiology.

[55]  Jinwei Zhang,et al.  A Two-Way Street: Regulatory Interplay between RNA Polymerase and Nascent RNA Structure. , 2016, Trends in biochemical sciences.

[56]  R. Sen,et al.  Transcription Elongation Factor NusA Is a General Antagonist of Rho-dependent Termination in Escherichia coli* , 2016, The Journal of Biological Chemistry.

[57]  J. Vogel,et al.  A 3' UTR-Derived Small RNA Provides the Regulatory Noncoding Arm of the Inner Membrane Stress Response. , 2016, Molecular cell.

[58]  I. Albert,et al.  NusA-dependent transcription termination prevents misregulation of global gene expression , 2016, Nature Microbiology.

[59]  Bryan D. Kolaczkowski,et al.  Genomic Targets and Features of BarA-UvrY (-SirA) Signal Transduction Systems , 2015, PloS one.

[60]  G. Storz,et al.  Alternative Hfq‐sRNA interaction modes dictate alternative mRNA recognition , 2015, The EMBO journal.

[61]  A. J. Carpousis,et al.  RNA degradosomes in bacteria and chloroplasts: classification, distribution and evolution of RNase E homologs , 2015, Molecular microbiology.

[62]  C. K. Vanderpool,et al.  Target activation by regulatory RNAs in bacteria. , 2015, FEMS microbiology reviews.

[63]  P. Redder,et al.  Bacterial versatility requires DEAD-box RNA helicases. , 2015, FEMS microbiology reviews.

[64]  Jos Vanderleyden,et al.  RNA-binding proteins involved in post-transcriptional regulation in bacteria , 2015, Front. Microbiol..

[65]  R. Edwards,et al.  The FinO family of bacterial RNA chaperones. , 2015, Plasmid.

[66]  I. Taylor,et al.  KH-RNA interactions: back in the groove. , 2015, Current opinion in structural biology.

[67]  Paul A. Wiggins,et al.  Genome-scale quantitative characterization of bacterial protein localization dynamics throughout the cell cycle , 2014, Molecular microbiology.

[68]  E. Wagner,et al.  Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. , 2015, Advances in genetics.

[69]  J. Vogel,et al.  Recognition of the small regulatory RNA RydC by the bacterial Hfq protein , 2014, eLife.

[70]  J. Belasco,et al.  Messenger RNA degradation in bacterial cells. , 2014, Annual review of genetics.

[71]  V. Ramakrishnan,et al.  The Ribosome Emerges from a Black Box , 2014, Cell.

[72]  S. Woodson,et al.  Structural model of an mRNA in complex with the bacterial chaperone Hfq , 2014, Proceedings of the National Academy of Sciences.

[73]  S. Gerstberger,et al.  A census of human RNA-binding proteins , 2014, Nature Reviews Genetics.

[74]  D. C. Swarts,et al.  The evolutionary journey of Argonaute proteins , 2014, Nature Structural &Molecular Biology.

[75]  Wade C. Winkler,et al.  A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator , 2014, Science.

[76]  Pascale Cossart,et al.  Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA , 2014, Science.

[77]  É. Massé,et al.  The iron-sensing aconitase B binds its own mRNA to prevent sRNA-induced mRNA cleavage , 2014, Nucleic acids research.

[78]  O. Amster-Choder,et al.  RNA localization in bacteria , 2014, RNA biology.

[79]  David Tollervey,et al.  Edinburgh Research Explorer Identification of Bacteriophage-Encoded Anti-sRNAs in Pathogenic Escherichia coli , 2022 .

[80]  J. Oost,et al.  Unravelling the structural and mechanistic basis of CRISPR–Cas systems , 2014, Nature Reviews Microbiology.

[81]  L. Bossi,et al.  RNA remodeling by bacterial global regulator CsrA promotes Rho-dependent transcription termination , 2014, Genes & development.

[82]  E. Sonnleitner,et al.  Regulation of Hfq by the RNA CrcZ in Pseudomonas aeruginosa Carbon Catabolite Repression , 2014, PLoS genetics.

[83]  F. Allain,et al.  Structural basis of the non-coding RNA RsmZ acting as a protein sponge , 2014, Nature.

[84]  K. Morris,et al.  The rise of regulatory RNA , 2014, Nature Reviews Genetics.

[85]  P. Uetz,et al.  The binary protein-protein interaction landscape of Escherichia coli , 2014, Nature Biotechnology.

[86]  Diogo M. Camacho,et al.  Central role for RNase YbeY in Hfq-dependent and Hfq-independent small-RNA regulation in bacteria , 2014, BMC Genomics.

[87]  R. Micura,et al.  Escherichia coli Ribosomal Protein S1 Unfolds Structured mRNAs Onto the Ribosome for Active Translation Initiation , 2013, PLoS biology.

[88]  H. Putzer,et al.  Initiation of mRNA decay in bacteria , 2013, Cellular and Molecular Life Sciences.

[89]  L. Betts,et al.  An unusual CsrA family member operates in series with RsmA to amplify posttranscriptional responses in Pseudomonas aeruginosa , 2013, Proceedings of the National Academy of Sciences.

[90]  S. Woodson,et al.  Conserved arginines on the rim of Hfq catalyze base pair formation and exchange , 2013, Nucleic acids research.

[91]  V. Ramakrishnan,et al.  Structural basis of the translational elongation cycle. , 2013, Annual review of biochemistry.

[92]  Yan Sun,et al.  Small RNA-Mediated Activation of Sugar Phosphatase mRNA Regulates Glucose Homeostasis , 2013, Cell.

[93]  David W. Taylor,et al.  An RNA Degradation Machine Sculpted by Ro Autoantigen and Noncoding RNA , 2013, Cell.

[94]  J. Vogel,et al.  Targeted decay of a regulatory small RNA by an adaptor protein for RNase E and counteraction by an anti-adaptor RNA. , 2013, Genes & development.

[95]  Eugene V Koonin,et al.  CRISPR-Cas , 2013, RNA biology.

[96]  E. Hajnsdorf,et al.  The interplay of Hfq, poly(A) polymerase I and exoribonucleases at the 3′ ends of RNAs resulting from Rho-independent termination , 2013, RNA biology.

[97]  C. Valverde,et al.  A CsrA/RsmA translational regulator gene encoded in the replication region of a Sinorhizobium meliloti cryptic plasmid complements Pseudomonas fluorescens rsmA/E mutants. , 2013, Microbiology.

[98]  Christopher A. Vakulskas,et al.  CsrA activates flhDC expression by protecting flhDC mRNA from RNase E‐mediated cleavage , 2013, Molecular microbiology.

[99]  P. François,et al.  The CshA DEAD-box RNA helicase is important for quorum sensing control in Staphylococcus aureus , 2013, RNA biology.

[100]  Peter C. Fineran,et al.  Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot , 2012, Proceedings of the National Academy of Sciences.

[101]  J. Gowrishankar,et al.  Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli , 2012, Proceedings of the National Academy of Sciences.

[102]  S. Block,et al.  Binding and translocation of termination factor rho studied at the single-molecule level. , 2012, Journal of molecular biology.

[103]  Ben F. Luisi,et al.  The Seed Region of a Small RNA Drives the Controlled Destruction of the Target mRNA by the Endoribonuclease RNase E , 2012, Molecular cell.

[104]  F. Allain,et al.  RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence , 2012, Cellular and Molecular Life Sciences.

[105]  I. Boni,et al.  Multiple activities of RNA-binding proteins S1 and Hfq. , 2012, Biochimie.

[106]  M. Yusupov,et al.  One core, two shells: bacterial and eukaryotic ribosomes , 2012, Nature Structural &Molecular Biology.

[107]  Jason G. Wallace,et al.  OLE RNA protects extremophilic bacteria from alcohol toxicity , 2012, Nucleic acids research.

[108]  C. Arraiano,et al.  The crucial role of PNPase in the degradation of small RNAs that are not associated with Hfq. , 2012, RNA.

[109]  Burak Okumus,et al.  Segregation of molecules at cell division reveals native protein localization , 2012, Nature Methods.

[110]  A. Kelley,et al.  Decoding in the Absence of a Codon by tmRNA and SmpB in the Ribosome , 2012, Science.

[111]  M. Smeltzer,et al.  The Staphylococcal Accessory Regulator, SarA, is an RNA-Binding Protein that Modulates the mRNA Turnover Properties of Late-Exponential and Stationary Phase Staphylococcus aureus Cells , 2012, Front. Cell. Inf. Microbio..

[112]  F. Rojo,et al.  Two small RNAs, CrcY and CrcZ, act in concert to sequester the Crc global regulator in Pseudomonas putida, modulating catabolite repression , 2012, Molecular microbiology.

[113]  Udo Heinemann,et al.  RNA single strands bind to a conserved surface of the major cold shock protein in crystals and solution. , 2012, RNA.

[114]  Tony James,et al.  Back in the groove , 2011 .

[115]  D. B. Kearns,et al.  CsrA–FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis , 2011, Molecular microbiology.

[116]  J. Mitobe,et al.  RodZ regulates the post‐transcriptional processing of the Shigella sonnei type III secretion system , 2011, EMBO reports.

[117]  E. Nudler,et al.  Linking RNA Polymerase Backtracking to Genome Instability in E. coli , 2011, Cell.

[118]  J. Vogel,et al.  Hfq and its constellation of RNA , 2011, Nature Reviews Microbiology.

[119]  O. Weichenrieder,et al.  Structural basis for RNA 3′-end recognition by Hfq , 2011, Proceedings of the National Academy of Sciences.

[120]  J. Williamson,et al.  Assembly of bacterial ribosomes. , 2011, Annual review of biochemistry.

[121]  J. Glover,et al.  ProQ is an RNA chaperone that controls ProP levels in Escherichia coli. , 2011, Biochemistry.

[122]  Jennifer A. Doudna,et al.  The Crystal Structure of the Signal Recognition Particle in Complex with Its Receptor , 2011, Science.

[123]  N. Krogan,et al.  Phenotypic Landscape of a Bacterial Cell , 2011, Cell.

[124]  M. Gottesman,et al.  Transcription termination maintains chromosome integrity , 2010, Proceedings of the National Academy of Sciences.

[125]  J. Elf,et al.  RNAs actively cycle on the Sm-like protein Hfq. , 2010, Genes & development.

[126]  P. Valentin‐Hansen,et al.  C-terminally truncated derivatives of Escherichia coli Hfq are proficient in riboregulation. , 2010, Journal of molecular biology.

[127]  K. Severinov,et al.  RNA remodeling and gene regulation by cold shock proteins , 2010, RNA biology.

[128]  George E Fox,et al.  Origin and evolution of the ribosome. , 2010, Cold Spring Harbor perspectives in biology.

[129]  Vitaly Epshtein,et al.  An allosteric mechanism of Rho-dependent transcription termination , 2010, Nature.

[130]  D. Karlson,et al.  Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins. , 2010, BMB reports.

[131]  T. Link,et al.  Structure of Escherichia coli Hfq bound to polyriboadenylate RNA , 2009, Proceedings of the National Academy of Sciences.

[132]  P. Babitzke,et al.  Regulation of translation initiation by RNA binding proteins. , 2009, Annual review of microbiology.

[133]  J. Vogel,et al.  In vivo expression and purification of aptamer-tagged small RNA regulators , 2009, Nucleic acids research.

[134]  J. Vogel,et al.  Coding sequence targeting by MicC RNA reveals bacterial mRNA silencing downstream of translational initiation , 2009, Nature Structural &Molecular Biology.

[135]  J. Vogel,et al.  Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes , 2009, RNA biology.

[136]  C. Turnbough,et al.  Regulation of Pyrimidine Biosynthetic Gene Expression in Bacteria: Repression without Repressors , 2008, Microbiology and Molecular Biology Reviews.

[137]  Evgeny Nudler,et al.  Termination Factor Rho and Its Cofactors NusA and NusG Silence Foreign DNA in E. coli , 2008, Science.

[138]  S. Gopinath,et al.  Insights into anti-termination regulation of the hut operon in Bacillus subtilis: importance of the dual RNA-binding surfaces of HutP , 2008, Nucleic Acids Research.

[139]  A. S. Attia,et al.  Moraxella catarrhalis Expresses an Unusual Hfq Protein , 2008, Infection and Immunity.

[140]  E. Sonnleitner,et al.  The C-terminal domain of Escherichia coli Hfq is required for regulation , 2007, Nucleic acids research.

[141]  A. Serganov,et al.  Structured mRNAs Regulate Translation Initiation by Binding to the Platform of the Ribosome , 2007, Cell.

[142]  Florian C. Oberstrass,et al.  Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA , 2007, Nature Structural &Molecular Biology.

[143]  Tom J. Petty,et al.  CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding , 2007, Molecular microbiology.

[144]  Anirvan Sengupta,et al.  Analysis of Escherichia coli Global Gene Expression Profiles in Response to Overexpression and Deletion of CspC and CspE , 2006, Journal of bacteriology.

[145]  Paul Gollnick,et al.  Complexity in regulation of tryptophan biosynthesis in Bacillus subtilis. , 2005, Annual review of genetics.

[146]  P. Babitzke,et al.  RNA sequence and secondary structure participate in high-affinity CsrA-RNA interaction. , 2005, RNA.

[147]  H. Aiba,et al.  RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. , 2005, Genes & development.

[148]  O. Amster-Choder The bgl sensory system: a transmembrane signaling pathway controlling transcriptional antitermination. , 2005, Current opinion in microbiology.

[149]  Hiroshi Mizuno,et al.  Structural basis of HutP-mediated anti-termination and roles of the Mg2+ ion and L-histidine ligand , 2005, Nature.

[150]  A. Feig,et al.  Escherichia coli Hfq has distinct interaction surfaces for DsrA, rpoS and poly(A) RNAs , 2004, Nature Structural &Molecular Biology.

[151]  D. Sledjeski,et al.  The DNA binding protein H-NS binds to and alters the stability of RNA in vitro and in vivo. , 2004, Journal of molecular biology.

[152]  Jimin Wang,et al.  The structure of a ribosomal protein S8/spc operon mRNA complex. , 2004, RNA.

[153]  T. Afonyushkin,et al.  Coincident Hfq binding and RNase E cleavage sites on mRNA and small regulatory RNAs. , 2003, RNA.

[154]  Xin Wang,et al.  A novel sRNA component of the carbon storage regulatory system of Escherichia coli , 2003, Molecular microbiology.

[155]  P. Romby,et al.  Bacterial translational control at atomic resolution. , 2003, Trends in genetics : TIG.

[156]  E. Westhof,et al.  The modular structure of Escherichia coli threonyl‐tRNA synthetase as both an enzyme and a regulator of gene expression , 2003, Molecular microbiology.

[157]  E. Nudler,et al.  Transcription termination and anti‐termination in E. coli , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[158]  P. Valentin‐Hansen,et al.  Structures of the pleiotropic translational regulator Hfq and an Hfq–RNA complex: a bacterial Sm‐like protein , 2002, The EMBO journal.

[159]  P. Babitzke,et al.  CsrA regulates glycogen biosynthesis by preventing translation of glgC in Escherichia coli , 2002, Molecular microbiology.

[160]  G. Storz,et al.  The Sm-like Hfq protein increases OxyS RNA interaction with target mRNAs. , 2002, Molecular cell.

[161]  P. Højrup,et al.  Hfq: a bacterial Sm-like protein that mediates RNA-RNA interaction. , 2002, Molecular cell.

[162]  C. Portier,et al.  PNPase autocontrols its expression by degrading a double‐stranded structure in the pnp mRNA leader , 2001, The EMBO journal.

[163]  Stanley N. Cohen,et al.  Escherichia coli Poly(A)-binding Proteins That Interact with Components of Degradosomes or Impede RNA Decay Mediated by Polynucleotide Phosphorylase and RNase E* , 2001, The Journal of Biological Chemistry.

[164]  N. V. Tzareva,et al.  Non‐canonical mechanism for translational control in bacteria: synthesis of ribosomal protein S1 , 2001, The EMBO journal.

[165]  M. Inouye,et al.  Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli , 2001, Molecular microbiology.

[166]  S. Cohen,et al.  RNA degradosomes exist in vivo in Escherichia coli as multicomponent complexes associated with the cytoplasmic membrane via the N-terminal region of ribonuclease E. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[167]  C. Dorman,et al.  A role for the Escherichia coli H‐NS‐like protein StpA in OmpF porin expression through modulation of micF RNA stability , 2000, Molecular microbiology.

[168]  M. Inouye,et al.  Escherichia coli CspA-family RNA chaperones are transcription antiterminators. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[169]  S. Hattman Unusual transcriptional and translational regulation of the bacteriophage Mu mom operon. , 1999, Pharmacology & therapeutics.

[170]  D. Briant,et al.  Reconstitution of a minimal RNA degradosome demonstrates functional coordination between a 3' exonuclease and a DEAD-box RNA helicase. , 1999, Genes & development.

[171]  R. B. Greaves,et al.  Structure of the trp RNA-binding attenuation protein, TRAP, bound to RNA , 1999, Nature.

[172]  M. Inouye,et al.  Sequence‐selective interactions with RNA by CspB, CspC and CspE, members of the CspA family of Escherichia coli , 1999, Molecular microbiology.

[173]  A. Sonenshein,et al.  Bacillus subtilis aconitase is an RNA-binding protein. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[174]  J. M. Wood,et al.  Protein ProQ Influences Osmotic Activation of Compatible Solute Transporter ProP in Escherichia coliK-12 , 1999, Journal of bacteriology.

[175]  T. Romeo,et al.  The global regulator CsrA of Escherichia coli is a specific mRNA-binding protein , 1997, Journal of bacteriology.

[176]  C. Higgins,et al.  A DEAD-box RNA helicase in the Escherichia coli RNA degradosome , 1996, Nature.

[177]  J. Belasco,et al.  Autoregulation of RNase E synthesis in Escherichia coli. , 1995, Nucleic acids symposium series.

[178]  C. Yanofsky,et al.  TRAP, the trp RNA-binding attenuation protein of Bacillus subtilis, is a multisubunit complex that appears to recognize G/UAG repeats in the trpEDCFBA and trpG transcripts. , 1994, The Journal of biological chemistry.

[179]  M. Inouye,et al.  Crystal structure of CspA, the major cold shock protein of Escherichia coli. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[180]  G. Montelione,et al.  Solution NMR structure of the major cold shock protein (CspA) from Escherichia coli: identification of a binding epitope for DNA. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[181]  M. Gong,et al.  Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties , 1993, Journal of bacteriology.

[182]  O. Amster-Choder,et al.  Modulation of the dimerization of a transcriptional antiterminator protein by phosphorylation. , 1992, Science.

[183]  G. Stormo,et al.  Autogenous regulatory site on the bacteriophage T4 gene 32 messenger RNA. , 1988, Journal of molecular biology.

[184]  G. Stormo,et al.  RNA binding site of R17 coat protein. , 1987, Biochemistry.

[185]  M. Grunberg‐Manago,et al.  Escherichia coli protein synthesis initiation factor IF3 controls its own gene expression at the translational level in vivo. , 1986, Journal of molecular biology.

[186]  M. Grunberg‐Manago,et al.  Autogenous control of Escherichia coli threonyl-tRNA synthetase expression in vivo. , 1985, Journal of molecular biology.

[187]  J R Greenberg,et al.  Ultraviolet light-induced crosslinking of mRNA to proteins. , 1979, Nucleic acids research.

[188]  Jeffrey W. Roberts Termination Factor for RNA Synthesis , 1969, Nature.