Optimal PID Controller Tuning using Stochastic Programming Techniques

We argue that stochastic programming provides a powerful framework to tune and analyze the performance limits of controllers. In particular, stochastic programming formulations can be used to identify controller settings that remain robust across diverse scenarios (disturbances, set-points, and modeling errors) observed in real-time operations. We also discuss how to use historical data and sampling techniques to construct operational scenarios and inference analysis techniques to provide statistical guarantees on limiting controller performance. Under the proposed framework, it is also possible to use risk metrics to handle extreme (rare) events and stochastic dominance concepts to conduct systematic benchmarking studies. We provide numerical studies to illustrate the concepts and to demonstrate that modern modeling and local/global optimization tools can tackle large-scale applications. The proposed work also opens the door to data-based controller tuning strategies that can be implemented in real-time operations. This article is protected by copyright. All rights reserved.

[1]  Basil Kouvaritakis,et al.  Stochastic MPC with inequality stability constraints , 2006, Autom..

[2]  Jochen Garcke,et al.  Sparse Grids in a Nutshell , 2012 .

[3]  Pu Li,et al.  Using Sparse-Grid Methods To Improve Computation Efficiency in Solving Dynamic Nonlinear Chance-Constrained Optimization Problems , 2011 .

[4]  K.J. ÅSTRÖM,et al.  Design of PI Controllers based on Non-Convex Optimization , 1998, Autom..

[5]  Victor M. Zavala,et al.  Scalable modeling and solution of stochastic multiobjective optimization problems , 2017, Comput. Chem. Eng..

[6]  Tore Hägglund,et al.  Automatic Tuning and Adaptation for PID Controllers—A Survey , 1992 .

[7]  David L. Woodruff,et al.  PySP: modeling and solving stochastic programs in Python , 2012, Mathematical Programming Computation.

[8]  Alberto Bemporad,et al.  Evaluation of piecewise affine control via binary search tree , 2003, Autom..

[9]  Chyi Hwang,et al.  Solution of a non-convex optimization arising in PI/PID control design , 2002, Autom..

[10]  M. Morari,et al.  Internal model control: PID controller design , 1986 .

[11]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[12]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[13]  A. Mesbah,et al.  Stochastic Model Predictive Control: An Overview and Perspectives for Future Research , 2016, IEEE Control Systems.

[14]  Manfred Morari,et al.  CONSYD: integrated software for computer aided control system design and analysis , 1987 .

[15]  Ambros M. Gleixner,et al.  SCIP: global optimization of mixed-integer nonlinear programs in a branch-and-cut framework , 2018, Optim. Methods Softw..

[16]  Toshiharu Sugie,et al.  Robust PID controller tuning based on the constrained particle swarm optimization , 2008, Autom..

[17]  Tore Hägglund,et al.  The future of PID control , 2000 .

[18]  Victor M. Zavala,et al.  Interior-point decomposition approaches for parallel solution of large-scale nonlinear parameter estimation problems , 2008 .

[19]  Qing-Guo Wang,et al.  Auto-tuning of multivariable PID controllers from decentralized relay feedback , 1997, Autom..

[20]  Alexander Shapiro,et al.  The empirical behavior of sampling methods for stochastic programming , 2006, Ann. Oper. Res..

[21]  S. Skogestad Simple analytic rules for model reduction and PID controller tuning , 2004 .

[22]  Rosario Toscano,et al.  Robust synthesis of a PID controller by uncertain multimodel approach , 2007, Inf. Sci..

[23]  Paul I. Barton,et al.  Global Optimization with Nonlinear Ordinary Differential Equations , 2006, J. Glob. Optim..

[24]  G. Pflug Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk , 2000 .

[25]  Min-Sen Chiu,et al.  Robust PID controller design via LMI approach , 2002 .

[26]  Tong-heng Lee,et al.  PI/PID controller tuning via LQR approach , 2000 .

[27]  R. Toscano A simple robust PI/PID controller design via numerical optimization approach , 2004 .

[28]  Sanjay Mehrotra,et al.  Scenario generation for stochastic optimization problems via the sparse grid method , 2015, Comput. Optim. Appl..

[29]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[30]  Victor M. Zavala,et al.  A stochastic optimization approach for the design of organic fluid mixtures for low-temperature heat recovery , 2017 .

[31]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[32]  R. K. Wood,et al.  Terminal composition control of a binary distillation column , 1973 .

[33]  Carl D. Laird,et al.  An interior-point method for efficient solution of block-structured NLP problems using an implicit Schur-complement decomposition , 2014, Comput. Chem. Eng..

[34]  Iain Dunning,et al.  JuMP: A Modeling Language for Mathematical Optimization , 2015, SIAM Rev..

[35]  L.Y. Pao,et al.  Control of variable-speed wind turbines: standard and adaptive techniques for maximizing energy capture , 2006, IEEE Control Systems.

[36]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .