A fast direct solver for two dimensional quasi-periodic multilayered media scattering problems

This manuscript presents a fast direct solution technique for solving two dimensional wave scattering problems from quasi-periodic multilayered structures. When the interface geometries are complex, the dominant term in the computational cost of creating the direct solver scales O ( NI ) where N is the number of discretization points on each interface and I is the number of interfaces. The bulk of the precomputation can be re-used for any choice of incident wave. As a result, the direct solver can solve over 200 scattering problems involving an eleven layer geometry with complex interfaces 100 times faster than building a new fast direct solver from scratch for each new set of boundary data. An added benefit of the presented solver is that building an updated solver for a new geometry involving a replaced interface or a change in material property in one layer is inexpensive compared to building a new fast direct solver from scratch.

[1]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[2]  Per-Gunnar Martinsson,et al.  High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane , 2014, Adv. Comput. Math..

[3]  Timo Betcke,et al.  Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains , 2007, J. Comput. Phys..

[4]  Jeroen Tromp,et al.  A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation , 2003 .

[5]  Hoang T. Nguyen,et al.  Low-dispersion low-loss dielectric gratings for efficient ultrafast laser pulse compression at high average powers , 2018, Optics & Laser Technology.

[6]  Michael D. Perry,et al.  High-efficiency multilayer dielectric diffraction gratings. , 1995 .

[7]  Adrianna Gillman,et al.  A fast direct solver for quasi-periodic scattering problems , 2013, J. Comput. Phys..

[8]  Gene H. Golub,et al.  Matrix computations , 1983 .

[9]  Emily C. Warmann,et al.  Simulation and partial prototyping of an eight‐junction holographic spectrum‐splitting photovoltaic module , 2019, Energy Science & Engineering.

[10]  Leslie Greengard,et al.  A new integral representation for quasi-periodic fields and its application to two-dimensional band structure calculations , 2010, J. Comput. Phys..

[11]  Johan Helsing,et al.  Corner singularities for elliptic problems: Integral equations, graded meshes, quadrature, and compressed inverse preconditioning , 2008, J. Comput. Phys..

[12]  Leslie Greengard,et al.  A Fast Direct Solver for Structured Linear Systems by Recursive Skeletonization , 2012, SIAM J. Sci. Comput..

[13]  J. Bremer On the Nyström discretization of integral equations on planar curves with corners , 2012 .

[14]  Min Hyung Cho,et al.  Spectrally-accurate numerical method for acoustic scattering from doubly-periodic 3D multilayered media , 2018, J. Comput. Phys..

[15]  Jianlin Xia,et al.  Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..

[16]  Oscar P Bruno,et al.  Efficient high-order evaluation of scattering by periodic surfaces: deep gratings, high frequencies, and glancing incidences. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[18]  S. Chandler-Wilde,et al.  Efficient calculation of two-dimensional periodic and waveguide acoustic Green's functions. , 2002, The Journal of the Acoustical Society of America.

[19]  John A. Caird,et al.  An overview of LLNL high-energy short-pulse technology for advanced radiography of laser fusion experiments , 2004 .

[20]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[21]  D Decker,et al.  High-efficiency multilayer dielectric diffraction gratings. , 1995, Optics letters.

[22]  Per-Gunnar Martinsson,et al.  On the Compression of Low Rank Matrices , 2005, SIAM J. Sci. Comput..

[23]  P. Martinsson,et al.  High-order accurate Nystrom discretization of integral equations with weakly singular kernels on smooth curves in the plane , 2011, 1112.6262.

[24]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[25]  Leslie Greengard,et al.  Quadrature by expansion: A new method for the evaluation of layer potentials , 2012, J. Comput. Phys..

[26]  Per-Gunnar Martinsson,et al.  A spectrally accurate direct solution technique for frequency-domain scattering problems with variable media , 2013, 1308.5998.

[27]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[28]  C. M. Linton,et al.  Resonant effects in scattering by periodic arrays , 2007 .

[29]  M. Nicholas,et al.  A higher order numerical method for 3-d double periodic electromagnetic scattering problem , 2008 .

[30]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[31]  Per-Gunnar Martinsson,et al.  A high-order accurate accelerated direct solver for acoustic scattering from surfaces , 2013 .

[32]  T. Arens Scattering by Biperiodic Layered Media: The Integral Equation Approach , 2010 .

[33]  Rainer Kress,et al.  Transmission problems for the Helmholtz equation , 1978 .

[34]  Leslie Greengard,et al.  A fast direct solver for scattering from periodic structures with multiple material interfaces in two dimensions , 2014, J. Comput. Phys..

[35]  Bradley K. Alpert,et al.  Hybrid Gauss-Trapezoidal Quadrature Rules , 1999, SIAM J. Sci. Comput..

[36]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[37]  Vladimir Rokhlin,et al.  Solution of acoustic scattering problems by means of second kind integral equations , 1983 .

[38]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[39]  Chang-Pin Chou,et al.  Antireflection subwavelength structures analyzed by using the finite difference time domain method , 2009 .

[40]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[41]  Mukul Agrawal,et al.  High performance solar-selective absorbers using coated sub-wavelength gratings. , 2010, Optics express.

[42]  Hung-Yin Tsai,et al.  Finite Difference Time Domain Analysis of Three-Dimensional Sub-Wavelength Structured Arrays , 2008 .

[43]  Min Hyung Cho,et al.  Robust fast direct integral equation solver for quasi-periodic scattering problems with a large number of layers. , 2014, Optics express.

[44]  A. Bonnet-Bendhia,et al.  Guided waves by electromagnetic gratings and non‐uniqueness examples for the diffraction problem , 1994 .

[45]  Stefan A. Sauter,et al.  Is the Pollution Effect of the FEM Avoidable for the Helmholtz Equation Considering High Wave Numbers? , 1997, SIAM Rev..

[46]  W. Hackbusch,et al.  Foundations of Computational Mathematics: Minneapolis, 2002: Approximation of boundary element operators , 2004 .

[47]  Jen-Hui Tsai,et al.  Fabrication of antireflection structures on TCO film for reflective liquid crystal display , 2009 .

[48]  Claus Müller,et al.  Foundations of the mathematical theory of electromagnetic waves , 1969 .

[49]  E. Yip A Note on the Stability of Solving a Rank-p Modification of a Linear System by the Sherman–Morrison–Woodbury Formula , 1986 .

[50]  Katherine Han,et al.  Numerical Modeling of Sub-Wavelength Anti-Reflective Structures for Solar Module Applications , 2014, Nanomaterials.

[51]  Lifeng Li Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings , 1996 .

[52]  Lexing Ying,et al.  Hierarchical Interpolative Factorization for Elliptic Operators: Integral Equations , 2013, 1307.2666.

[53]  Lifeng Li,et al.  Use of Fourier series in the analysis of discontinuous periodic structures , 1996 .

[54]  Vladimir Rokhlin,et al.  High-Order Corrected Trapezoidal Quadrature Rules for Singular Functions , 1997 .

[55]  Per-Gunnar Martinsson,et al.  A direct solver with O(N) complexity for integral equations on one-dimensional domains , 2011, 1105.5372.

[56]  Simon N. Chandler-Wilde,et al.  On Integral Equation and Least Squares Methods for Scattering by Diffraction Gratings , 2006 .

[57]  S. Börm Efficient Numerical Methods for Non-local Operators , 2010 .

[58]  A. Lerer,et al.  Wideband All-Dielectric Diffraction Grating on Chirped Mirror , 2010, Journal of Lightwave Technology.

[59]  S. Chandrasekaran,et al.  Algorithms to solve hierarchically semi-separable systems , 2007 .

[60]  Agustin G. Fernandez-Lado,et al.  Rapidly convergent quasi-periodic Green functions for scattering by arrays of cylinders—including Wood anomalies , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  Vidya Ganapati,et al.  Light Trapping Textures Designed by Electromagnetic Optimization for Subwavelength Thick Solar Cells , 2013, IEEE Journal of Photovoltaics.

[62]  Adrianna Gillman,et al.  A Fast Algorithm for Simulating Multiphase Flows Through Periodic Geometries of Arbitrary Shape , 2015, SIAM J. Sci. Comput..

[63]  Steffen Börm,et al.  Approximation of boundary element operators by adaptive H2-matrices , 2003 .