Computing circular separability

Two sets of planar pointsS1 andS2 are circularly separable if there is a circle that enclosesS1 but excludesS2. We show that deciding whether two sets are circularly separable can be accomplished inO(n) time using linear programming. We also show that a smallest separating circle can be found inO(n) time, and largest separating circles can be found inO(n logn) time. Finally we establish that all these results are optimal.

[1]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[2]  F. P. Preparata,et al.  Convex hulls of finite sets of points in two and three dimensions , 1977, CACM.

[3]  David P. Dobkin,et al.  The Complexity of Linear Programming , 1980, Theor. Comput. Sci..

[4]  R. Seidel A Convex Hull Algorithm Optimal for Point Sets in Even Dimensions , 1981 .

[5]  David G. Kirkpatrick,et al.  Fast Detection of Polyhedral Intersections , 1982, ICALP.

[6]  Nimrod Megiddo,et al.  Linear-time algorithms for linear programming in R3 and related problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[7]  David G. Kirkpatrick,et al.  Fast Detection of Polyhedral Intersection , 1983, Theor. Comput. Sci..

[8]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[9]  D. T. Lee,et al.  Computational Geometry—A Survey , 1984, IEEE Transactions on Computers.

[10]  Chul E. Kim,et al.  Digital disks and a digital compactness measure , 1984, STOC '84.

[11]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[12]  Martin E. Dyer,et al.  Linear Time Algorithms for Two- and Three-Variable Linear Programs , 1984, SIAM J. Comput..

[13]  Herbert Edelsbrunner,et al.  Finding Extreme Points in Three Dimensions and Solving the Post-Office Problem in the Plane , 1985, Inf. Process. Lett..

[14]  Kenneth L. Clarkson,et al.  Linear Programming in O(n * (3_d)_2) Time , 1986, Inf. Process. Lett..

[15]  Steve Fisk Separating Point Sets by Circles, and the Recognition of Digital Disks , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[17]  Martin E. Dyer,et al.  On a Multidimensional Search Technique and its Application to the Euclidean One-Centre Problem , 1986, SIAM J. Comput..