Direct Observation of Plasma Waves and Dynamics Induced by Laser-Accelerated Electron Beams

Plasma wakefield acceleration (PWFA) is a novel acceleration technique with promising prospects for both particle colliders and light sources. However, PWFA research has so far been limited to a few large-scale accelerator facilities worldwide. Here, we present first results on plasma wakefield generation using electron beams accelerated with a 100-TW-class Ti:sapphire laser. Because of their ultrashort duration and high charge density, the laser-accelerated electron bunches are suitable to drive plasma waves at electron densities in the order of 1019 cm-3. We capture the beam-induced plasma dynamics with femtosecond resolution using few-cycle optical probing and, in addition to the plasma wave itself, we observe a distinctive transverse ion motion in its trail. This previously unobserved phenomenon can be explained by the ponderomotive force of the plasma wave acting on the ions, resulting in a modulation of the plasma density over many picoseconds. Because of the scaling laws of plasma wakefield generation, results obtained at high plasma density using high-current laser-accelerated electron beams can be readily scaled to low-density systems. Laser-driven PWFA experiments can thus act as miniature models for their larger, conventional counterparts. Furthermore, our results pave the way towards a novel generation of laser-driven PWFA, which can potentially provide ultralow emittance beams within a compact setup.

[1]  A. Huebl,et al.  Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator , 2017, Nature Communications.

[2]  P. Masson-Laborde,et al.  Giga-electronvolt electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration , 2014, 1408.2494.

[3]  J. Rosenzweig,et al.  Effects of ion motion in intense beam-driven plasma wakefield accelerators. , 2005, Physical review letters.

[4]  B. Schmidt,et al.  The FLASHForward facility at DESY , 2016 .

[5]  Robin Marjoribanks,et al.  Plasma mirrors for ultrahigh-intensity optics , 2007 .

[6]  J. Vieira,et al.  Hosing Instability Suppression in Self-Modulated Plasma Wakefields , 2014, 1404.5387.

[7]  M. J. V. Streeter,et al.  Wakefield-induced ionization injection in beam-driven plasma accelerators , 2015, 1506.05486.

[8]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[9]  Chen,et al.  Acceleration of electrons by the interaction of a bunched electron beam with a plasma. , 1985, Physical review letters.

[10]  P. Brijesh,et al.  Mapping the x-ray emission region in a laser-plasma accelerator. , 2011, Physical review letters.

[11]  Wei Lu,et al.  Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator , 2007, Nature.

[12]  E. Siminos,et al.  Modeling ultrafast shadowgraphy in laser-plasma interaction experiments , 2015, 1509.08846.

[13]  Brendan O'Shea,et al.  Plasma wakefield acceleration experiments at FACET II , 2018 .

[14]  Victor Malka,et al.  Physics of fully-loaded laser-plasma accelerators , 2015 .

[15]  S. Hooker,et al.  Developments in laser-driven plasma accelerators , 2013, Nature Photonics.

[16]  C. Joshi,et al.  The development of laser- and beam-driven plasma accelerators as an experimental field , 2007 .

[17]  K. A. Marsh,et al.  Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield , 2015, Nature.

[18]  M. Downer,et al.  Diagnostics for plasma-based electron accelerators , 2018, Reviews of Modern Physics.

[19]  J. Mikhailova,et al.  Shock-front injector for high-quality laser-plasma acceleration. , 2013, Physical review letters.

[20]  Z Najmudin,et al.  Measurements of wave-breaking radiation from a laser-wakefield accelerator. , 2007, Physical review letters.

[21]  J. Rosenzweig,et al.  Ultracold electron bunch generation via plasma photocathode emission and acceleration in a beam-driven plasma blowout. , 2012, Physical review letters.

[22]  J. Cary,et al.  Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams , 2017, Nature Communications.

[23]  S. Fritzler,et al.  Electron Acceleration in Cavitated Channels Formed by a Petawatt Laser in Low-Density Plasma , 2005 .

[24]  B. Schmidt,et al.  Temporal evolution of longitudinal bunch profile in a laser wakefield accelerator , 2015 .

[25]  J Osterhoff,et al.  All-optical steering of laser-wakefield-accelerated electron beams. , 2010, Physical review letters.

[26]  Eric Esarey,et al.  Particle-in-cell simulations of tunneling ionization effects in plasma-based accelerators , 2003 .

[27]  Erik Lefebvre,et al.  Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator , 2011 .

[28]  Eric Esarey,et al.  Overview of plasma-based accelerator concepts , 1996 .

[29]  Chen,et al.  Energy transfer in the plasma wake-field accelerator. , 1986, Physical review letters.

[30]  J Osterhoff,et al.  High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection. , 2013, Physical review letters.

[31]  Z. Sheng,et al.  AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN , 2015, 1512.05498.

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  S. Sebban,et al.  Demonstration of relativistic electron beam focusing by a laser-plasma lens , 2014, Nature Communications.

[34]  Michael E. Jones,et al.  Two‐dimensional dynamics of the plasma wakefield accelerator , 1987 .

[35]  J. Vieira,et al.  Ion motion in the wake driven by long particle bunches in plasmasa) , 2014, 1409.4328.

[36]  K. Ta Phuoc,et al.  Electron Rephasing in a Laser-Wakefield Accelerator. , 2015, Physical review letters.

[37]  T. Kurz,et al.  Calibration and cross-laboratory implementation of scintillating screens for electron bunch charge determination. , 2018, The Review of scientific instruments.

[38]  J. Lee,et al.  Self-mode-transition from laser wakefield accelerator to plasma wakefield accelerator of laser-driven plasma-based electron acceleration , 2010 .

[39]  Alexander Buck,et al.  Dual-energy electron beams from a compact laser-driven accelerator , 2018, Nature Photonics.

[40]  G. Paulus,et al.  Few-cycle optical probe-pulse for investigation of relativistic laser-plasma interactions , 2013 .

[41]  Erik Lefebvre,et al.  Principles and applications of compact laser–plasma accelerators , 2008 .

[42]  O Willi,et al.  Monoenergetic energy doubling in a hybrid laser-plasma wakefield accelerator. , 2010, Physical review letters.

[43]  Alexander Pukhov,et al.  Proton-driven plasma-wakefield acceleration , 2008, 0807.4599.

[44]  S. Karsch,et al.  Tunable all-optical quasimonochromatic thomson x-ray source in the nonlinear regime. , 2015, Physical review letters.

[45]  A. Macchi A Superintense Laser-Plasma Interaction Theory Primer , 2013 .

[46]  California,et al.  Generating high-brightness electron beams via ionization injection by transverse colliding lasers in a plasma-wakefield accelerator. , 2013, Physical review letters.

[47]  J. Vieira,et al.  Beam loading in the nonlinear regime of plasma-based acceleration. , 2008, Physical review letters.

[48]  Simpson,et al.  Experimental observation of plasma wake-field acceleration. , 1988, Physical review letters.

[49]  G. White,et al.  High-efficiency acceleration of an electron beam in a plasma wakefield accelerator , 2014, Nature.

[50]  Andrei Seryi,et al.  Plasma wakefield acceleration experiments at FACET , 2010 .

[51]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[52]  L. Soby,et al.  Acceleration of electrons in the plasma wakefield of a proton bunch , 2018, Nature.

[53]  B. Mahieu,et al.  High-Brilliance Betatron γ-Ray Source Powered by Laser-Accelerated Electrons. , 2017, Physical review letters.

[54]  T. Ditmire,et al.  Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV , 2013, Nature Communications.

[55]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[56]  M. Rosing,et al.  Demonstration of electron beam self‐focusing in plasma wake fields , 1990 .

[57]  Wei Lu,et al.  OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators , 2002, International Conference on Computational Science.

[58]  J. Vieira,et al.  Ion motion in self-modulated plasma wakefield accelerators. , 2012, Physical review letters.

[59]  A. Maier,et al.  Demonstration scheme for a laser-plasma driven free-electron laser , 2012 .

[60]  J. Vay,et al.  Simulations for Plasma and Laser Acceleration , 2016 .

[61]  Sven Steinke,et al.  Reflectance characterization of tape-based plasma mirrors , 2016 .

[62]  C. Joshi,et al.  Plasma Accelerators at the Energy Frontier and on Tabletops , 2003 .

[63]  A. Solodov,et al.  Dynamics of a plasma channel created by the wakefield of a short laser pulse , 2003 .

[64]  E. Esarey,et al.  Transverse space-charge field-induced plasma dynamics for ultraintense electron-beam characterization , 2018 .

[65]  Ferenc Krausz,et al.  Density-transition based electron injector for laser driven wakefield accelerators , 2010 .

[66]  M. Yeung,et al.  Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch , 2016 .