Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing

This book constitutes the refereed conference proceedings of the 15th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, RSFDGrC 2015, held in Tianjin, China in November 2015 as one of the co-located conference of the 2015 Joint Rough Set Symposium, JRS 2015. The 44 papers were carefully reviewed and selected from 97 submissions. The papers in this volume cover topics such as rough sets: the experts speak; generalized rough sets; rough sets and graphs; rough and fuzzy hybridization; granular computing; data mining and machine learning; three-way decisions; IJCRS 2015 data challenge.

[1]  Albert-László Barabási,et al.  Control Centrality and Hierarchical Structure in Complex Networks , 2012, PloS one.

[2]  Wen-Xu Wang,et al.  Exact controllability of complex networks , 2013, Nature Communications.

[3]  Tamás Vicsek,et al.  Controlling edge dynamics in complex networks , 2011, Nature Physics.

[4]  Tsau Young Lin,et al.  Data Mining and Machine Oriented Modeling: A Granular Computing Approach , 2000, Applied Intelligence.

[5]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[6]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[7]  Andrzej Skowron,et al.  Rudiments of rough sets , 2007, Inf. Sci..

[8]  Piotr Synak,et al.  Two Database Related Interpretations of Rough Approximations: Data Organization and Query Execution , 2013, Fundam. Informaticae.

[9]  Andrzej Skowron,et al.  From Sensory Data to Decision Making: A Perspective on Supporting a Fire Commander , 2013, 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT).

[10]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[11]  Y. Yao Granular Computing : basic issues and possible solutions , 2000 .

[12]  Dominik Lzak Degrees of conditional (in)dependence: A framework for approximate Bayesian networks and examples related to the rough set-based feature selection , 2009 .

[13]  Henry Le Roy Finch,et al.  Wittgenstein - Understanding and Meaning. , 1981 .

[14]  Lotfi A. Zadeh,et al.  Fuzzy logic = computing with words , 1996, IEEE Trans. Fuzzy Syst..

[15]  Sergei O. Kuznetsov,et al.  Relations between Proto-fuzzy concepts, Crisply Generated Fuzzy Concepts, and Interval Pattern Structures , 2010, CLA.

[16]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[17]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[18]  Dominik Slezak,et al.  The Problem of Finding the Sparsest Bayesian Network for an Input Data Set is NP-Hard , 2012, ISMIS.

[19]  Eranda C Ela,et al.  Assignment Problems , 1964, Comput. J..

[20]  Witold Pedrycz,et al.  The Principle of Justifiable Granularity and an Optimization of Information Granularity Allocation as Fundamentals of Granular Computing , 2011, J. Inf. Process. Syst..

[21]  Lotfi A. Zadeh,et al.  From Computing with Numbers to Computing with Words - from Manipulation of Measurements to Manipulation of Perceptions , 2005, Logic, Thought and Action.

[22]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[23]  Andrzej Skowron,et al.  Function Approximation and Quality Measures in Rough-Granular Systems , 2011, Fundam. Informaticae.

[24]  S. Strogatz Exploring complex networks , 2001, Nature.

[25]  Dominik Slezak,et al.  Feedforward neural networks for compound signals , 2011, Theor. Comput. Sci..

[26]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[27]  Dominik Slezak,et al.  Rough Sets and Functional Dependencies in Data: Foundations of Association Reducts , 2009, Trans. Comput. Sci..

[28]  Dominik Slezak,et al.  Approximate Entropy Reducts , 2002, Fundam. Informaticae.

[29]  Guanrong Chen,et al.  Pinning a complex dynamical network to its equilibrium , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[30]  Witold Pedrycz,et al.  From fuzzy sets to shadowed sets: Interpretation and computing , 2009, Int. J. Intell. Syst..

[31]  Bernhard Ganter,et al.  A Formal Concept Analysis Approach to Rough Data Tables , 2011, Trans. Rough Sets.

[32]  Andrzej Skowron,et al.  Rough Mereological Calculi of Granules: A Rough Set Approach To Computation , 2001, Comput. Intell..

[33]  Hiroshi Sakai,et al.  Apriori-Based Rule Generation in Incomplete Information Databases and Non-Deterministic Information Systems , 2014, Fundam. Informaticae.

[34]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..

[35]  Sebastian Widz,et al.  Rough Set Based Decision Support—Models Easy to Interpret , 2012 .

[36]  Andrzej Skowron,et al.  From the Rough Set Theory to the Evidence Theory , 1991 .

[37]  R. Keefe Theories of vagueness , 2000 .

[38]  Wojciech Kotlowski,et al.  Optimized Generalized Decision in Dominance-Based Rough Set Approach , 2007, RSKT.

[39]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[40]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[41]  ezakWarsaw UniversityBanacha,et al.  Decomposition and Synthesis of Decision Tables with Respect to Generalized Decision Functions , 1999 .

[42]  Alexis Tsoukiàs,et al.  Incomplete Information Tables and Rough Classification , 2001, Comput. Intell..

[43]  Hung Son Nguyen,et al.  Approximate Boolean Reasoning: Foundations and Applications in Data Mining , 2006, Trans. Rough Sets.

[44]  Lotfi A. Zadeh,et al.  A Theory of Approximate Reasoning , 1979 .

[45]  Jakub Wróblewski,et al.  Adaptive Aspects of Combining Approximation Spaces , 2004, Rough-Neural Computing: Techniques for Computing with Words.

[46]  Shilpa Chakravartula,et al.  Complex Networks: Structure and Dynamics , 2014 .

[47]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[48]  Andrzej Skowron,et al.  The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.

[49]  Y. Lai,et al.  Optimizing controllability of complex networks by minimum structural perturbations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[50]  Lotfi A. Zadeh,et al.  Computing with Words - Principal Concepts and Ideas , 2012, Studies in Fuzziness and Soft Computing.

[51]  Dominik Slezak,et al.  Normalized Decision Functions and Measures for Inconsistent Decision Tables Analysis , 2000, Fundam. Informaticae.

[52]  Dominik Slezak,et al.  Stable rule extraction and decision making in rough non-deterministic information analysis , 2011, Int. J. Hybrid Intell. Syst..

[53]  C. L. Philip Chen,et al.  Data-intensive applications, challenges, techniques and technologies: A survey on Big Data , 2014, Inf. Sci..

[54]  Andrzej Skowron,et al.  Calculi of Approximation Spaces , 2006, Fundam. Informaticae.

[55]  Eduardo D. Sontag,et al.  Kalman’s Controllability Rank Condition: From Linear to Nonlinear , 1991 .

[56]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[57]  Andrzej Skowron,et al.  Rough sets: Some extensions , 2007, Inf. Sci..