Coastal upwelling influences population structure of dusky grouper Epinephelus marginatus: An integrative approach based on otolith chemistry and muscle stable isotopes.

[1]  A. Lizé,et al.  European flounder foraging movements in an estuarine nursery seascape inferred from otolith microchemistry and stable isotopes. , 2022, Marine environmental research.

[2]  K. Hüssy,et al.  Reading the biomineralized book of life: expanding otolith biogeochemical research and applications for fisheries and ecosystem-based management , 2022, Reviews in Fish Biology and Fisheries.

[3]  B. Walther,et al.  Quantifying euryhaline histories in red drum Sciaenops ocellatus: otolith chemistry and muscle isotope ratios. , 2022, Journal of fish biology.

[4]  W. Marques,et al.  Variability of the Spreading of the Patos Lagoon Plume Using Numerical Drifters , 2022, Coasts.

[5]  E. Hallerman,et al.  Global population genetic structure of the sequential hermaphrodite, dusky grouper ( Epinephelus marginatus ) , 2021, Aquatic Conservation: Marine and Freshwater Ecosystems.

[6]  P. Grønkjær,et al.  Otolith Fingerprints and Tissue Stable Isotope Information Enable Allocation of Juvenile Fishes to Different Nursery Areas , 2021, Water.

[7]  B. Gillanders,et al.  El Niño – Southern Oscillation drives variations in growth and otolith chemistry in a top predatory fish , 2021 .

[8]  I. Feller,et al.  Stable Isotopes Suggest Limited Role of Wetland Macrophyte Production Supporting Aquatic Food Webs Across a Mangrove-Salt Marsh Ecotone , 2021, Estuaries and Coasts.

[9]  Daniel R. Goethel,et al.  Incoherent dimensionality in fisheries management: consequences of misaligned stock assessment and population boundaries , 2020, ICES Journal of Marine Science.

[10]  N. Rodríguez‐Ezpeleta,et al.  Combining genetic markers with stable isotopes in otoliths reveals complexity in the stock structure of Atlantic bluefin tuna (Thunnus thynnus) , 2020, Scientific Reports.

[11]  B. Gillanders,et al.  Inter-estuarine Variation in Otolith Chemistry in a Large Coastal Predator: a Viable Tool for Identifying Coastal Nurseries? , 2020, Estuaries and Coasts.

[12]  R. Pérez-Enríquez,et al.  Population genomics reveals a mismatch between management and biological units in green abalone (Haliotis fulgens) , 2020, PeerJ.

[13]  N. Fabré,et al.  White mullet Mugil curema population structure from Mexico and Brazil revealed by otolith chemistry. , 2020, Journal of fish biology.

[14]  A. V. D. Plas,et al.  Genetic structure of Sufflogobius bibarbatus in the Benguela upwelling ecosystem using microsatellite markers , 2020 .

[15]  A. M. Garcia,et al.  Spatio-Temporal Changes in Basal Food Source Assimilation by Fish Assemblages in a Large Tropical Bay in the SW Atlantic Ocean , 2020, Estuaries and Coasts.

[16]  S. Morgan,et al.  Larval dispersal in a changing ocean with an emphasis on upwelling regions , 2020, Ecosphere.

[17]  A. Volpedo,et al.  Application of otolith morphometry for the study of ontogenetic variations of Odontesthes argentinensis , 2019, Environmental Biology of Fishes.

[18]  J. Rising,et al.  The small world of global marine fisheries: The cross-boundary consequences of larval dispersal , 2019, Science.

[19]  J. Vieira,et al.  Use of fresh water by an estuarine-resident marine catfish: evidence from gonadal and otolith chemistry analyses , 2019, Journal of the Marine Biological Association of the United Kingdom.

[20]  M. Meekan,et al.  Patterns and drivers of vertical movements of the large fishes of the epipelagic , 2019, Reviews in Fish Biology and Fisheries.

[21]  S. Dobretsov,et al.  Coastal upwelling affects filter-feeder stable isotope composition across three continents. , 2019, Marine environmental research.

[22]  T. Horner,et al.  Barite formation in the ocean: Origin of amorphous and crystalline precipitates , 2019, Chemical Geology.

[23]  J. Vieira,et al.  Allochthonous versus autochthonous organic matter sustaining macroconsumers in a subtropical sandy beach revealed by stable isotopes , 2019, Marine Biology Research.

[24]  Joseph M. Smith,et al.  Otolith microchemistry reveals partial migration and life history variation in a facultatively anadromous, iteroparous salmonid, bull trout (Salvelinus confluentus) , 2019, Environmental Biology of Fishes.

[25]  B. Gillanders,et al.  Extrinsic and intrinsic factors shape the ability of using otolith chemistry to characterize estuarine environmental histories. , 2018, Marine environmental research.

[26]  A. M. Garcia,et al.  A review of the biology, ecology, behavior and conservation status of the dusky grouper, Epinephelus marginatus (Lowe 1834) , 2018, Reviews in Fish Biology and Fisheries.

[27]  B. Gillanders,et al.  Otolith chemistry does not just reflect environmental conditions: a meta-analytic evaluation , 2018 .

[28]  J. Mohan,et al.  Integrating Multiple Natural Tags to Link Migration Patterns and Resource Partitioning Across a Subtropical Estuarine Gradient , 2018, Estuaries and Coasts.

[29]  E. Seyboth,et al.  Isotopic evidence of the effect of warming on the northern Antarctic Peninsula ecosystem , 2017 .

[30]  L. Sampaio,et al.  Elemental turnover rates and trophic discrimination in juvenile Lebranche mullet Mugil liza under experimental conditions. , 2017, Journal of fish biology.

[31]  Daniel R. Goethel,et al.  Lessons learned from practical approaches to reconcile mismatches between biological population structure and stock units of marine fish , 2017 .

[32]  A. Norkko,et al.  Extraordinarily rapid speciation in a marine fish , 2017, Proceedings of the National Academy of Sciences.

[33]  M. Bajay,et al.  Population genetic structure of an estuarine and a reef fish species exploited by Brazilian artisanal fishing , 2016 .

[34]  C. Matthee,et al.  Spatio‐temporal genetic structure and the effects of long‐term fishing in two partially sympatric offshore demersal fishes , 2016, Molecular ecology.

[35]  A. M. Garcia,et al.  Trophic segregation of a fish assemblage along lateral depth gradients in a subtropical coastal lagoon revealed by stable isotope analyses. , 2016, Journal of fish biology.

[36]  P. Afonso,et al.  Contrasting movements and residency of two serranids in a small Macaronesian MPA , 2016 .

[37]  A. M. Garcia,et al.  Trophic connectivity and basal food sources sustaining tropical aquatic consumers along a mangrove to ocean gradient , 2015 .

[38]  B. Gillanders,et al.  Connectivity within estuaries: An otolith chemistry and muscle stable isotope approach , 2015 .

[39]  M. Costantini,et al.  Effects of terrestrial input on macrobenthic food webs of coastal sea are detected by stable isotope analysis in Gaeta Gulf , 2015 .

[40]  José María Rodríguez,et al.  Larval fish distribution and retention in the Canary Current system during the weak upwelling season , 2014 .

[41]  H. Cabral,et al.  Integrating microsatellite DNA markers and otolith geochemistry to assess population structure of European hake (Merluccius merluccius) , 2014 .

[42]  J. Vieira,et al.  High plasticity in habitat use of Lycengraulis grossidens (Clupeiformes, Engraulididae) , 2014 .

[43]  B. Koeck,et al.  Diel and seasonal movement pattern of the dusky grouper Epinephelus marginatus inside a marine reserve. , 2014, Marine environmental research.

[44]  P. Shaw,et al.  Population Connectivity and Phylogeography of a Coastal Fish, Atractoscion aequidens (Sciaenidae), across the Benguela Current Region: Evidence of an Ancient Vicariant Event , 2014, PloS one.

[45]  A. Piola,et al.  Seasonal variability and coastal upwelling near Cape Santa Marta (Brazil) , 2013 .

[46]  A. Bode,et al.  Stable nitrogen isotopes in coastal macroalgae: geographic and anthropogenic variability. , 2013, The Science of the total environment.

[47]  R. Gonzalez-Quiros,et al.  Seasonal and ontogenic migrations of meagre (Argyrosomus regius) determined by otolith geochemical signatures , 2012 .

[48]  H. Cabral,et al.  Testing an otolith geochemistry approach to determine population structure and movements of European hake in the northeast Atlantic Ocean and Mediterranean Sea , 2012 .

[49]  D. Post,et al.  Applying stable isotopes to examine food‐web structure: an overview of analytical tools , 2012, Biological reviews of the Cambridge Philosophical Society.

[50]  J. Beckers,et al.  Generation of analysis and consistent error fields using the Data Interpolating Variational Analysis (Diva) , 2012 .

[51]  J. Muelbert,et al.  Estuarine dependency in a marine fish evaluated with otolith chemistry , 2012 .

[52]  C. Trueman,et al.  Identifying migrations in marine fishes through stable-isotope analysis. , 2012, Journal of fish biology.

[53]  M. Harmelin-Vivien,et al.  Fingerprints of lagoonal life: Migration of the marine flatfish Solea solea assessed by stable isotopes and otolith microchemistry , 2012 .

[54]  R. Brodeur,et al.  Epipelagic fish distributions in relation to thermal fronts in a coastal upwelling system using high-resolution remote-sensing techniques , 2011 .

[55]  K. Winemiller,et al.  Estuary hydrogeomorphology affects carbon sources supporting aquatic consumers within and among ecological guilds , 2011, Hydrobiologia.

[56]  G. Whitledge,et al.  Otolith trace element and stable isotopic compositions differentiate fishes from the Middle Mississippi River, its tributaries, and floodplain lakes , 2011, Hydrobiologia.

[57]  A. Lewis,et al.  Evidence for discrete subpopulations of sea perch (Helicolenus ercoides) across four fjords in Fiordland, New Zealand , 2010 .

[58]  F. Saborido-Rey,et al.  Reproductive pattern of an exploited dusky grouper Epinephelus marginatus (Lowe 1834) (Pisces: Serranidae) population in the western Mediterranean , 2010 .

[59]  K. Selkoe,et al.  Ocean currents help explain population genetic structure , 2010, Proceedings of the Royal Society B: Biological Sciences.

[60]  R. Kelly,et al.  Genetic Structure Among 50 Species of the Northeastern Pacific Rocky Intertidal Community , 2010, PloS one.

[61]  G. Turner,et al.  The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species , 2009, Proceedings of the National Academy of Sciences.

[62]  A. Piola,et al.  The effects of river discharge and seasonal winds on the shelf off southeastern South America , 2008 .

[63]  C. Rezende,et al.  Plankton trophic structure and particulate organic carbon production during a coastal downwelling-upwelling cycle , 2008 .

[64]  K. Winemiller,et al.  Isotopic variation of fishes in freshwater and estuarine zones of a large subtropical coastal lagoon , 2007 .

[65]  John A. Barth,et al.  Upwelling around Cabo Frio, Brazil: The importance of wind stress curl , 2006 .

[66]  C. M. Rae A demonstration of the hydrographic partition of the Benguela upwelling ecosystem at 26°40'S , 2005 .

[67]  S. Palumbi POPULATION GENETICS, DEMOGRAPHIC CONNECTIVITY, AND THE DESIGN OF MARINE RESERVES , 2003 .

[68]  Reiner Schlitzer,et al.  Interactive analysis and visualization of geoscience data with ocean data view , 2002 .

[69]  D. Post USING STABLE ISOTOPES TO ESTIMATE TROPHIC POSITION: MODELS, METHODS, AND ASSUMPTIONS , 2002 .

[70]  D. R. Robertson,et al.  Adult habitat preferences, larval dispersal, and the comparative phylogeography of three Atlantic surgeonfishes (Teleostei: Acanthuridae) , 2002, Molecular ecology.

[71]  C. Kirchner,et al.  Seasonal movements of silver kob, Argyrosomus inodorus, (Griffiths and Heemstra) in Namibian waters , 2001 .

[72]  E. Azzurro,et al.  Reproduction in the dusky grouper from the southern Mediterranean , 2001 .

[73]  B. Gillanders,et al.  Elemental fingerprints of otoliths of fish may distinguish estuarine 'nursery' habitats , 2000 .

[74]  S. Campana,et al.  Otolith elemental fingerprints as biological tracers of fish stocks , 2000 .

[75]  S. Campana Chemistry and composition of fish otoliths : pathways, mechanisms and applications , 1999 .

[76]  R. Thresher Elemental composition of otoliths as a stock delineator in fishes , 1999 .

[77]  Kevin D. Friedland,et al.  Stock identification and its role in stock assessment and fisheries management: an overview , 1999 .

[78]  S. Villiers SEAWATER STRONTIUM AND SR/CA VARIABILITY IN THE ATLANTIC AND PACIFIC OCEANS , 1999 .

[79]  Claude Roy,et al.  Optimal Environmental Window and Pelagic Fish Recruitment Success in Upwelling Areas , 1989 .

[80]  A. M. Garcia,et al.  Dataset on the isotopic (ẟ13C, ẟ15N) and elemental (C, N) composition of estuarine primary producers in the subtropical Southwestern Atlantic coast , 2021, Latin American Data in Science.

[81]  P. Reis-Santos,et al.  Otolith chemistry in stock delineation: A brief overview, current challenges and future prospects , 2016 .

[82]  Y. Schaeffer-Novelli,et al.  Climate changes in mangrove forests and salt marshes , 2016 .

[83]  D. Hoeinghaus,et al.  Trophic ecology of dusky grouper Epinephelus marginatus (Actinopterygii, Epinephelidae) in littoral and neritic habitats of southern Brazil as elucidated by stomach contents and stable isotope analyses , 2014, Hydrobiologia.

[84]  R. Coutinho,et al.  Biophysical interactions in the Cabo Frio upwelling system, southeastern Brazil , 2012 .

[85]  J. Valentin The Cabo Frio Upwelling System, Brazil , 2001 .

[86]  P. Castaing,et al.  Hydrographical Characteristics of the Estuarine Area of Patos Lagoon (30°S, Brazil) , 1999 .

[87]  Murray Brown,et al.  Ocean Data View 4.0 , 1998 .

[88]  K. Mann,et al.  Physical oceanography, food chains, and fish stocks: a review , 1993 .