Real-time in-situ distributed fiber core temperature measurement in hundred-watt fiber laser oscillator pumped by 915/976 nm LD sources

[1]  Xiaolin Wang,et al.  Investigations of mode instability in large-mode-area fiber amplifier pumped by 915/976nm LD sources , 2019, International Symposium on Laser Interaction with Matter.

[2]  Volker Krause,et al.  Extraction of more than 10 kW from a single ytterbium-doped MM-fiber , 2019, LASE.

[3]  Pengfei Ma,et al.  Monolithic fiber laser oscillator with record high power , 2018, Laser Physics Letters.

[4]  Xiaojun Xu,et al.  Real time distributed temperature measurement of the gain fiber in all-fiber laser employing OFDR technology , 2017, Applied Optics and Photonics China.

[5]  Zejin Liu,et al.  Mitigating of modal instabilities in linearly-polarized fiber amplifiers by shifting pump wavelength , 2014, 1412.0965.

[6]  M. Zervas,et al.  High Power Fiber Lasers: A Review , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  Eric Honea,et al.  Threshold power and fiber degradation induced modal instabilities in high-power fiber amplifiers based on large mode area fibers , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[8]  K. Hejaz,et al.  Controlling mode instability in a 500 W ytterbium-doped fiber laser , 2014 .

[9]  J. Limpert,et al.  High-power fibre lasers , 2013, Nature Photonics.

[10]  F. Jansen,et al.  Passive mitigation strategies for mode instabilities in high-power fiber laser systems. , 2013, Optics express.

[11]  Arlee V. Smith,et al.  Steady-periodic method for modeling mode instability in fiber amplifiers. , 2013, Optics express.

[12]  Andreas Tünnermann,et al.  Build up and decay of mode instability in a high power fiber amplifier. , 2012, Optics express.

[13]  B. Ward,et al.  Origin of thermal modal instabilities in large mode area fiber amplifiers. , 2012, Optics express.

[14]  Bing He,et al.  Thermal effects in kilowatt all-fiber MOPA. , 2011, Optics express.

[15]  David J. Richardson,et al.  High power fiber lasers: current status and future perspectives [Invited] , 2010 .

[16]  Alfredo Güemes,et al.  Optical Fiber Distributed Sensing - Physical Principles and Applications , 2010 .

[17]  D. Richardson,et al.  In-situ thermal/Brillouin characterization of a high-power fiber laser based on Brillouin optical time domain analysis , 2008 .

[18]  M. Wolfe,et al.  Characterization of Polarization-Maintaining Fiber Using High-Sensitivity Optical-Frequency-Domain Reflectometry , 2006, Journal of Lightwave Technology.

[19]  B. Soller,et al.  Measurement of localized heating in fiber optic components with millimeter spatial resolution , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[20]  B. Soller,et al.  High resolution optical frequency domain reflectometry for characterization of components and assemblies. , 2005, Optics express.

[21]  David C. Brown,et al.  Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers , 2001 .

[22]  D. Hand,et al.  Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse. , 1988, Optics letters.

[23]  R. Ulrich,et al.  Optical frequency domain reflectometry in single‐mode fiber , 1981 .

[24]  R. Ulrich,et al.  Optical frequency-domain reflectometry in single-mode fibers , 1981 .

[25]  D. E. Gray,et al.  American Institute of Physics Handbook , 1957 .

[26]  许晓军 Xu Xiaojun,et al.  Temperature Measurement for Gain Fiber Core in All-Fiber Amplifier Based on Distributed Sensing , 2017 .

[27]  Feng Ying Temperature Distribution in High Power Photonic Crystal Fiber Laser , 2008 .