Short term unit-commitment using genetic algorithms

The authors present a genetic approach for determining the priority order in the commitment of thermal units in power generation. The objective of the problem is to properly schedule the on/off states of all thermal units in a system to meet the load demand and the reverse requirement at each time interval, such that the overall system generation cost is a minimum, while satisfying various operational constraints. The authors examine the feasiblity of using genetic algorithms and report some simulation results in near-optimal commitment of thermal units in a power system.

[1]  Bruce F. Wollenberg,et al.  A unit commitment expert system (power system control) , 1988 .

[2]  S. M. Shahidehpour,et al.  A heuristic short-term unit commitment , 1991 .

[3]  P. G. Lowery,et al.  Generating Unit Commitment by Dynamic Programming , 1966 .

[4]  W. J. Hobbs,et al.  An enhanced dynamic programming approach for unit commitment , 1988 .

[5]  Yuval Davidor,et al.  Epistasis Variance: Suitability of a Representation to Genetic Algorithms , 1990, Complex Syst..

[6]  David E. Goldberg,et al.  Sizing Populations for Serial and Parallel Genetic Algorithms , 1989, ICGA.

[7]  Md. Sayeed Salam,et al.  Integrating an expert system into a thermal unit-commitment algorithm , 1991 .

[8]  Arthur I. Cohen,et al.  A Branch-and-Bound Algorithm for Unit Commitment , 1983, IEEE Transactions on Power Apparatus and Systems.

[9]  S. M. Shahidehpour,et al.  A hybrid artificial neural network-dynamic programming approach to unit commitment , 1992 .

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  Francisco D. Galiana,et al.  Towards a more rigorous and practical unit commitment by Lagrangian relaxation , 1988 .

[12]  D. Dasgupta,et al.  Unit commitment in thermal power generation using genetic algorithms , 1993 .

[13]  C.K. Pang,et al.  Optimal short-term thermal unit commitment , 1976, IEEE Transactions on Power Apparatus and Systems.

[14]  Lashon B. Booker,et al.  Intelligent Behavior as an Adaptation to the Task Environment , 1982 .

[15]  S. M. Shahidehpour,et al.  An intelligent dynamic programming for unit commitment application , 1991 .

[16]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[17]  F. Albuyeh,et al.  Evaluation of Dynamic Programming Based Methods and Multiple area Representation for Thermal Unit Commitments , 1981, IEEE Transactions on Power Apparatus and Systems.

[18]  Francisco D. Galiana,et al.  Unit commitment by simulated annealing , 1990 .

[19]  A. Merlin,et al.  A New Method for Unit Commitment at Electricite De France , 1983, IEEE Transactions on Power Apparatus and Systems.

[20]  L. F. B. Baptistella,et al.  A Decomposition Approach to Problem of Unit Commitment Schedule for Hydrothermal Systems , 1980 .

[21]  John A. Muckstadt,et al.  An Application of Lagrangian Relaxation to Scheduling in Power-Generation Systems , 1977, Oper. Res..

[22]  Jonathan F. Bard,et al.  Short-Term Scheduling of Thermal-Electric Generators Using Lagrangian Relaxation , 1988, Oper. Res..

[23]  F.N. Lee,et al.  The Application of Commitment Utilization Factor (CUF) to Thermal Unit Commitment , 1991, IEEE Power Engineering Review.