Jupiter: A fundamentally different magnetospheric interaction with the solar wind

Magnetic reconnection between the solar wind and Earth's magnetic field creates an “open” magnetosphere with erosion of magnetic flux from the dayside and return on the nightside. At Jupiter, the large source of plasma from Io and fast rotation rate create a magnetosphere whose dynamics is dominated by internal processes. This, along with its sheer physical size, makes the nightside return of flux difficult, if not impossible. However, because magnetic reconnection still occurs on Jupiter's dayside magnetopause, it has been generally assumed that Jupiter's magnetosphere must be similarly open. Here we show how additional reconnection between the IMF and open magnetospheric flux back near flanks can re‐close this open flux without having to invoke reconnection in the Jovian magnetotail. Our reconnection cycle solves the problem of closing and returning open magnetic flux in a large, internally dominated magnetosphere that constantly sheds large amounts of plasma down its magnetotail.

[1]  D. Mccomas,et al.  Diverse Plasma Populations and Structures in Jupiter's Magnetotail , 2007, Science.

[2]  S. Imber,et al.  Observations of significant flux closure by dual lobe reconnection , 2007 .

[3]  S. Cowley,et al.  Significance of Dungey-cycle flows in Jupiter's and Saturn's magnetospheres, and their identification on closed equatorial field lines , 2007 .

[4]  M. Dougherty,et al.  Dynamics of the Jovian magnetosphere , 2007 .

[5]  C. Russell,et al.  Mirror mode structures in the Jovian magnetosheath , 2006 .

[6]  Suzanne M. Imber,et al.  The auroral and ionospheric flow signatures of dual lobe reconnection , 2006 .

[7]  Swh Cowley,et al.  Magnetopause reconnection rate estimates for Jupiter's magnetosphere based on interplanetary measurements at ~5AU , 2006 .

[8]  S. Schwartz,et al.  Characteristics of the magnetosheath electron boundary layer under northward interplanetary magnetic field: Implications for high‐latitude reconnection , 2005 .

[9]  C. Jackman,et al.  Implications of rapid planetary rotation for the Dungey magnetotail of Saturn , 2005 .

[10]  Philippe Zarka,et al.  Jupiter's Aurora , 2007 .

[11]  M. Kivelson,et al.  Dynamical consequences of two modes of centrifugal instability in Jupiter's outer magnetosphere , 2004 .

[12]  Stephen E. Milan,et al.  A simple model of the flux content of the distant magnetotail , 2004 .

[13]  R. Prangé,et al.  Detection of the southern counterpart of the Jovian northern polar cusp: Shared properties , 2004 .

[14]  M. Kivelson,et al.  24 - The configuration of Jupiter's magnetosphere , 2004 .

[15]  Denis Grodent,et al.  Jupiter's polar auroral emissions , 2003 .

[16]  Emma J. Bunce,et al.  Jupiter's polar ionospheric flows: Theoretical interpretation , 2003 .

[17]  M. Kivelson,et al.  The Configuration of Jupiter ’ s Magnetosphere , 2003 .

[18]  Christopher T. Russell,et al.  Probabilistic models of the Jovian magnetopause and bow shock locations , 2002 .

[19]  Norbert Krupp,et al.  Particle bursts in the Jovian magnetosphere: Evidence for a near‐Jupiter neutral line , 2002 .

[20]  C. J. Owen,et al.  Role of the magnetosheath flow in determining the motion of open flux tubes , 2001 .

[21]  J. T. Hoeksema,et al.  Disconnection Events (DEs) in Halley's Comet 1985–1986:: The Correlation with Crossings of the Heliospheric Current Sheet (HCS) , 1999 .

[22]  K. Wenzel,et al.  Introduction to the Ulysses Encounter With Jupiter , 1993 .

[23]  G. Gisler,et al.  Jupiter's Magnetosphere: Plasma Description from the Ulysses Flyby , 1992, Science.

[24]  F. Gliem,et al.  Plasma Composition in Jupiter's Magnetosphere: Initial Results from the Solar Wind Ion Composition Spectrometer , 1992, Science.

[25]  C. Russell,et al.  Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field , 1992 .

[26]  R. Lepping,et al.  Magnetic field properties of Jupiter's tail at distances from 80 to 7500 Jovian radii , 1985 .

[27]  C. Russell,et al.  Flux transfer events at the Jovian magnetopause , 1985 .

[28]  J. Waite,et al.  Magnetospheric energization by interaction between planetary spin and the solar wind , 1984 .

[29]  B. Thomas,et al.  Modeling Jupiter’s magnetospheric currents using Pioneer data: Evidence for a low‐latitude cusp , 1984 .

[30]  L. Klein,et al.  Structure and other properties of Jupiter's distant magnetotail , 1983 .

[31]  V. Vasyliūnas,et al.  Plasma distribution and flow , 1983 .

[32]  J. D. Sullivan,et al.  Observations of Jupiter's distant magnetotail and wake , 1982 .

[33]  Louis J. Lanzerotti,et al.  Characteristics of hot plasma in the Jovian magnetosphere: Results from the Voyager spacecraft , 1981 .

[34]  V. Vasyliūnas Concepts of magnetospheric convection , 1975 .

[35]  Travis W. Hill,et al.  Configuration of the Jovian magnetosphere , 1974 .

[36]  G. Ioannidis,et al.  The magnetospheres of Jupiter and Earth , 1970 .

[37]  J. Dungey Interplanetary Magnetic Field and the Auroral Zones , 1961 .