Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations
暂无分享,去创建一个
[1] R. Romer,et al. Tables of functions with formulae and curves , 1934 .
[2] William J. Cody,et al. Algorithm 715: SPECFUN–a portable FORTRAN package of special function routines and test drivers , 1993, TOMS.
[3] Michael Foord,et al. IronPython in Action , 2009 .
[4] Linas Vepstas. An efficient algorithm for accelerating the convergence of oscillatory series, useful for computing the polylogarithm and Hurwitz zeta functions , 2007, Numerical Algorithms.
[5] Weblog Wikipedia,et al. In Wikipedia the Free Encyclopedia , 2005 .
[6] Donald E. Knuth,et al. The Art of Computer Programming, Vol. 2 , 1981 .
[7] David H. Bailey,et al. Experimental Mathematics in Action , 2007 .
[8] Pete Becker. The C++ Standard Library Extensions: A Tutorial and Reference , 2006 .
[9] Nico M. Temme,et al. Computing the real parabolic cylinder functions U(a, x), V(a, x) , 2006, TOMS.
[10] William M. Waite,et al. Software manual for the elementary functions , 1980 .
[11] Nico M. Temme,et al. Numerical methods for special functions , 2007 .
[12] Yudell L. Luke,et al. Algorithms for the Computation of Mathematical Functions , 1977 .
[13] A V Hershey,et al. Computation of Special Functions , 1978 .
[14] Leon M. Hall,et al. Special Functions , 1998 .
[15] Loyola Marymount,et al. Multiple Precision Complex Arithmetic and Functions , 1998 .
[16] David M. Smith,et al. Algorithm 786: multiple-precision complex arithmetic and functions , 1998, TOMS.
[17] Steven R. Finch,et al. Mathematical constants , 2005, Encyclopedia of mathematics and its applications.
[18] David J. Goodman,et al. Personal Communications , 1994, Mobile Communications.
[19] S. Tucker Taft,et al. Information technology — Programming Languages — Ada , 2001 .
[20] Brian Gough,et al. GNU Scientific Library Reference Manual - Third Edition , 2003 .
[21] David M. Smith,et al. Algorithm 693: a FORTRAN package for floating-point multiple-precision arithmetic , 1991, TOMS.
[22] David H. Bailey,et al. Parallel integer relation detection: Techniques and applications , 2001, Math. Comput..
[23] R. Romer,et al. Tables of functions with formulae and curves , 1934 .
[24] S. N. Stuart. Table errata: Higher transcendental functions, Vol. II [McGraw-Hill, New York, 1953; MR 15, 419] by A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi , 1981 .
[25] D. E. Amos. Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order , 1986, TOMS.
[26] Donald E. Knuth,et al. The Art of Computer Programming, Volumes 1-3 Boxed Set , 1998 .
[27] F. Olver. Asymptotics and Special Functions , 1974 .
[28] David H. Bailey,et al. Algorithm 719: Multiprecision translation and execution of FORTRAN programs , 1993, TOMS.
[29] Donald Ervin Knuth,et al. The Art of Computer Programming, 2nd Ed. (Addison-Wesley Series in Computer Science and Information , 1978 .
[30] Richard P. Brent,et al. Recent technical reports , 1977, SIGA.
[31] V. Moll,et al. A generalized polygamma function , 2003, math/0305079.
[32] It Informatics. On-Line Encyclopedia of Integer Sequences , 2010 .
[33] Jet Wimp,et al. Computation with recurrence relations , 1986 .
[34] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[35] Nicolai M. Josuttis. The C++ Standard Library: A Tutorial and Reference , 2012 .
[36] Xiaoye S. Li,et al. ARPREC: An arbitrary precision computation package , 2002 .
[37] Stephen Wolfram,et al. The Mathematica book (4th edition) , 1999 .
[38] David H. Bailey,et al. Multiprecision Translation and Execution of Fortran Programs , 1993 .
[39] D. E. Amos,et al. A remark on Algorithm 644: “A portable package for Bessel functions of a complex argument and nonnegative order” , 1995, TOMS.
[40] Louis Vessot King,et al. On the Direct Numerical Calculation of Elliptic Functions and Integrals , 2011 .
[41] L. Milne‐Thomson. A Treatise on the Theory of Bessel Functions , 1945, Nature.
[42] Vincent Lefèvre,et al. MPFR: A multiple-precision binary floating-point library with correct rounding , 2007, TOMS.
[43] David H. Bailey,et al. A Fortran 90-based multiprecision system , 1995, TOMS.
[44] N. M. Temme,et al. On the numerical evaluation of the modified bessel function of the third kind , 1975 .
[45] Peter Borwein,et al. An efficient algorithm for the Riemann zeta function , 1995 .
[46] William H. Press,et al. Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .