Hyperbolicity and complement of graphs

Abstract If X is a geodesic metric space and x 1 , x 2 , x 3 ∈ X , a geodesic triangle T = { x 1 , x 2 , x 3 } is the union of the three geodesics [ x 1 x 2 ] , [ x 2 x 3 ] and [ x 3 x 1 ] in X . The space X is δ -hyperbolic (in the Gromov sense) if any side of T is contained in a δ -neighborhood of the union of the two other sides, for every geodesic triangle T in X . We denote by δ ( X ) the sharp hyperbolicity constant of X , i.e.  δ ( X ) ≔ inf { δ ≥ 0 : X  is  δ -hyperbolic } . The study of hyperbolic graphs is an interesting topic since the hyperbolicity of a geodesic metric space is equivalent to the hyperbolicity of a graph related to it. The main aim of this paper is to obtain information about the hyperbolicity constant of the complement graph G ¯ in terms of properties of the graph G . In particular, we prove that if diam ( V ( G ) ) ≥ 3 , then δ ( G ¯ ) ≤ 2 , and that the inequality is sharp. Furthermore, we find some Nordhaus–Gaddum type results on the hyperbolicity constant of a graph δ ( G ) .

[1]  Y. Benoist Convexes hyperboliques et fonctions quasisymétriques , 2003 .

[2]  E. Jonckheere,et al.  Geometry of network security , 2004, Proceedings of the 2004 American Control Conference.

[3]  E. Tourís Graphs and Gromov hyperbolicity of non-constant negatively curved surfaces , 2011 .

[4]  Sergio Bermudo,et al.  Mathematical Properties of Gromov Hyperbolic Graphs , 2010 .

[5]  J. Koolen,et al.  On the Hyperbolicity of Chordal Graphs , 2001 .

[6]  Olivier Ly,et al.  Distance Labeling in Hyperbolic Graphs , 2005, ISAAC.

[7]  José M. Rodríguez,et al.  Uniformly Separated Sets and Gromov Hyperbolicity of Domains with the Quasihyperbolic Metric , 2011 .

[8]  José M. Rodríguez,et al.  Gromov hyperbolicity in Cartesian product graphs , 2010 .

[9]  Jacobus H. Koolen,et al.  Hyperbolic Bridged Graphs , 2002, Eur. J. Comb..

[10]  É. Ghys,et al.  Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .

[11]  Jose Maria Sigarreta,et al.  Hyperbolicity and parameters of graphs , 2011, Ars Comb..

[12]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metrics spaces II , 2004 .

[13]  José M. Rodríguez,et al.  Gromov hyperbolic equivalence of the hyperbolic and quasihyperbolic metrics in Denjoy domains , 2010 .

[14]  A. Portilla,et al.  A characterization of Gromov hyperbolicity of surfaces with variable negative curvature , 2009 .

[15]  Characterizing hyperbolic spaces and real trees , 2008, 0810.1526.

[16]  José M. Rodríguez,et al.  Gromov hyperbolicity through decomposition of metric spaces , 2004 .

[17]  Jose Maria Sigarreta,et al.  On the hyperbolicity constant in graphs , 2011, Discret. Math..

[18]  José M. Rodríguez,et al.  Gromov Hyperbolicity of Riemann Surfaces , 2007 .

[19]  José M. Rodríguez,et al.  Gromov hyperbolicity of Denjoy domains with hyperbolic and quasihyperbolic metrics , 2008, 0806.0097.

[20]  Y. Cho,et al.  Discrete Groups , 1994 .