Defining a vibrotactile toolkit for digital musical instruments: characterizing voice coil actuators, effects of loading, and equalization of the frequency response

The integration of vibrotactile feedback in digital music instruments (DMIs) is thought to improve the instrument’s response and make it more suitable for expert musical interactions. However, given the extreme requirements of musical performances, there is a need for solutions allowing for independent control of frequency and amplitude over a wide frequency bandwidth (40–1000 Hz) and low harmonic distortion, so that flexible and high-quality vibrotactile feedback can be displayed. In this paper, we evaluate cost-effective and portable solutions that meet these requirements. We first measure the magnitude–frequency and harmonic distortion characteristics of two vibrotactile actuators, where the harmonic distortion is quantified in the form of total harmonic distortion (THD). The magnitude–frequency and THD characteristics in two unloaded cases (actuator suspended freely or placed on a sandbag) are observed to be largely identical, with minor attenuation for actuators placed on the sandbag. Loading the actuator (when placed in a DMI) brings resonant features to its magnitude–frequency characteristics, increasing the output THD and imposing a dampening effect. To equalize the system’s frequency response, an autoregressive method that automatically estimates minimum-phase filter parameters is introduced, which by design, remains stable upon inversion A practical use of this method is demonstrated by implementing vibrotactile feedback in the poly vinyl chloride chassis of an unfinished DMI, the t-Stick. We finally compare the result of equalization by performing sinesweep measurements on the implementation and discuss the degree of equalization achieved using it.

[1]  A. Gray,et al.  A spectral-flatness measure for studying the autocorrelation method of linear prediction of speech analysis , 1974 .

[2]  Wolfgang Klippel,et al.  Tutorial: Loudspeaker Nonlinearities-Causes, Parameters, Symptoms , 2006 .

[3]  Steve Temme Why and How to Measure Distortion in Electroacoustic Transducers , 1992 .

[4]  Jaehoon Jung,et al.  Perceptually Transparent Vibration Rendering Using a Vibration Motor for Haptic Interaction , 2007, RO-MAN 2007 - The 16th IEEE International Symposium on Robot and Human Interactive Communication.

[5]  anonymous,et al.  Comprehensive review , 2019 .

[6]  Elena Garcia,et al.  A New and Versatile Adjustable Rigidity Actuator with Add-on Locking Mechanism (ARES-XL) , 2018 .

[7]  Alex Voishvillo,et al.  Assessment of Nonlinearity in Transducers and Sound Systems – From THD to Perceptual Models , 2006 .

[8]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[9]  Marcelo M. Wanderley,et al.  A Comprehensive Review of Sensors and Instrumentation Methods in Devices for Musical Expression , 2014, Sensors.

[10]  Alexander Refsum Jensenius,et al.  Proceedings of the International Conference on New Interfaces for Musical Expression , 2011 .

[11]  David M. Birnbaum,et al.  Musical vibrotactile feedback , 2007 .

[12]  Marcelo M. Wanderley,et al.  Vibrotactile Feedback in Digital Musical Instruments , 2006, NIME.

[13]  Sakae Yamamoto,et al.  Human Interface and the Management of Information: Information, Knowledge and Interaction Design , 2017, Lecture Notes in Computer Science.

[14]  E. Rustighi,et al.  Experimental Characterisation of a Flat Dielectric Elastomer Loudspeaker , 2018, Actuators.

[15]  Angelo Farina,et al.  Simultaneous Measurement of Impulse Response and Distortion with a Swept-Sine Technique , 2000 .

[16]  Naresh K. Sinha,et al.  System identification - Theory for the user : Lennart Ljung , 1989, Autom..

[17]  R. Brent Gillespie,et al.  Once More, with Feeling: Revisiting the Role of Touch in Performer-Instrument Interaction , 2018 .

[18]  Kenny Mitchell,et al.  Stereohaptics: a haptic interaction toolkit for tangible virtual experiences , 2016, SIGGRAPH Studio.

[19]  Seungmoon Choi,et al.  Vibrotactile Display: Perception, Technology, and Applications , 2013, Proceedings of the IEEE.

[20]  John Kenneth Salisbury,et al.  What you can't feel won't hurt you: Evaluating haptic hardware using a haptic contrast sensitivity function , 2011, IEEE Transactions on Haptics.

[21]  Marcelo M. Wanderley,et al.  The T-Stick: from musical interface to musical instrument , 2007, NIME '07.

[22]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[23]  Mark T. Marshall,et al.  Physical Interface Design for Digital Musical Instruments , 2009 .

[24]  Marcelo M. Wanderley,et al.  Perceptual and Technological Issues in the Design of Vibrotactile-Augmented Interfaces for Music Technology and Media , 2013, HAID.

[25]  Marcelo M. Wanderley,et al.  Design of Vibrotactile Feedback and Stimulation for Music Performance , 2018 .

[26]  M J Griffin,et al.  A comparison of vibrotactile thresholds on the finger obtained with different equipment. , 1994, Ergonomics.

[27]  Vidosav Stojanovic John G. Proakis and Dimitris G. Manolakis Digital signal processing: Principles, Algorithms, and Applications, 4/e Hardcover, Pearson Prentice Hall, Pearson Education, Inc. Upper Saddle River, NJ , 2006 .

[28]  Suranga Nanayakkara,et al.  Palm-area sensitivity to vibrotactile stimuli above 1~kHz , 2012, NIME.

[29]  Bruno L. Giordano,et al.  Perception of Vibrotactile Cues in Musical Performance , 2018 .

[30]  M. Wanderley,et al.  A LEARNING INTERFACE FOR NOVICE GUITAR PLAYERS USING VIBROTACTILE STIMULATION , 2011 .

[31]  Angelo Farina,et al.  Advancements in Impulse Response Measurements by Sine Sweeps , 2007 .

[32]  Sebastian Merchel,et al.  Auditory-Tactile Music Perception , 2014 .

[33]  Julius O. Smith,et al.  Introduction to Digital Filters: with Audio Applications , 2007 .

[34]  R. T. Verrillo,et al.  Vibration Sensation in Humans , 1992 .

[35]  Marcelo M. Wanderley,et al.  Autoregressive Parameter Estimation for Equalizing Vibrotactile Systems , 2019 .

[36]  G. Yule On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer's Sunspot Numbers , 1927 .

[37]  P. Welch On the variance of time and frequency averages over modified periodograms , 1977 .

[38]  Marcelo M. Wanderley,et al.  Haptic display of melodic intervals for musical applications , 2018, 2018 IEEE Haptics Symposium (HAPTICS).

[39]  Gilbert T. Walker,et al.  On Periodicity in Series of Related Terms , 1931 .

[40]  .. Wanderley Typology of Tactile Sounds and their Synthesis in Gesture-Driven Computer Music Performance , 2000 .

[41]  S. Papetti,et al.  A Brief Overview of the Human Somatosensory System , 2018 .

[42]  Stefano Papetti,et al.  Musical Haptics: Introduction , 2018 .

[43]  Kouta Minamizawa,et al.  TECHTILE toolkit: a prototyping tool for design and education of haptic media , 2012, VRIC.

[44]  Marcelo M. Wanderley,et al.  The Vibropixels: A Scalable Wireless Tactile Display System , 2017, HCI.

[45]  Federico Fontana,et al.  Implementation and Characterization of Vibrotactile Interfaces , 2018 .

[46]  Karon E. MacLean,et al.  Foundations of Transparency in Tactile Information Design , 2008, IEEE Transactions on Haptics.