Magnetoresistance from quantum interference effects in ferromagnets

The desire to maximize the sensitivity of read/write heads (and thus the information density) of magnetic storage devices has stimulated interest in the discovery and design of new magnetic materials exhibiting magnetoresistance. Recent discoveries include the ‘colossal’ magnetoresistance in the manganites and the enhanced magnetoresistance in low-carrier-density ferromagnets. An important feature of these systems is that the electrons involved in electrical conduction are different from those responsible for the magnetism. The latter are localized and act as scattering sites for the mobile electrons, and it is the field tuning of the scattering strength that ultimately gives rise to the observed magnetoresistance. Here we argue that magnetoresistance can arise by a different mechanism in certain ferromagnets—quantum interference effects rather than simple scattering. The ferromagnets in question are disordered, low-carrier-density magnets where the same electrons are responsible for both the magnetic properties and electrical conduction. The resulting magnetoresistance is positive (that is, the resistance increases in response to an applied magnetic field) and only weakly temperature-dependent below the Curie point.

[1]  T. V. Ramakrishnan,et al.  Disordered electronic systems , 1985 .

[2]  B. A. Calhoun,et al.  Ferromagnetic materials , 1955 .

[3]  R. Sherwood,et al.  Magnetic behavior of the monosilicides of the 3d-transition elements , 1972 .

[4]  Zhang,et al.  Unconventional charge gap formation in FeSi. , 1993, Physical review letters.

[5]  T. Sakakibara,et al.  Magnetization and Magnetoresistance of MnSi. II , 1982 .

[6]  M. Roth,et al.  Long period helimagnetism in the cubic B20 FexCo1−xSi and CoxMn1−x Si alloys , 1983 .

[7]  Y. Yamaguchi,et al.  Itinerant Electron Ferromagnetism in Fe_ Co_xSi Studied by Polarized Neutron Diffraction , 1992 .

[8]  T. F. Rosenbaum,et al.  Large magnetoresistance in non-magnetic silver chalcogenides , 1997, Nature.

[9]  K. Ueda Effect of magnetic field on spin fluctuations in weakly ferromagnetic metals , 1976 .

[10]  S. T. Wang,et al.  Studies of the ionic ferromagnet (LaPb)MnO3 III. Ferromagnetic resonance studies , 1969 .

[11]  Yoji Nakamura,et al.  Magnetic Properties of (Fe1-xCox)Si , 1976 .

[12]  A. P. Ramirez,et al.  Large Enhancement of Magnetoresistance in Tl2Mn2O7: Pyrochlore Versus Perovskite , 1997 .

[13]  T. Tiefel,et al.  Thousandfold Change in Resistivity in Magnetoresistive La-Ca-Mn-O Films , 1994, Science.

[14]  Yoshinori Takahashi,et al.  Spin fluctuations in itinerant electron magnetism , 1985 .

[15]  P. Littlewood,et al.  Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors , 1998, Nature.

[16]  G. Aeppli,et al.  Metal-Insulator Transitions in the Kondo Insulator FeSi and Classic Semiconductors Are Similar , 1997 .

[17]  Y. Tomioka,et al.  ORIGINS OF COLOSSAL MAGNETORESISTANCE IN PEROVSKITE-TYPE MANGANESE OXIDES (INVITED) , 1996 .

[18]  K. Tajima,et al.  Helical spin structure in manganese silicide MnSi , 1976 .

[19]  Lee,et al.  Erratum: Spin-orbit and paramagnon effects on magnetoconductance and tunneling , 1984, Physical review. B, Condensed matter.

[20]  Hwang,et al.  Spin-Polarized Intergrain Tunneling in La2/3Sr1/3MnO3. , 1996, Physical review letters.

[21]  L. Walker,et al.  Paramagnetic Excited State of FeSi , 1967 .

[22]  G. A. Thomas,et al.  Metal-insulator transition in a doped semiconductor , 1983 .

[23]  Y. Kubo,et al.  Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structure , 1996, Nature.

[24]  Z. Fisk,et al.  Low-temperature transport, optical, magnetic and thermodynamic properties of Fe 1-x Co x Si , 1997 .