Rational synthesis of marcacite FeS2 hollow microspheres for high-rate and long-life sodium ion battery anode

[1]  Yichen Du,et al.  Uniform yolk−shell Fe7S8@C nanoboxes as a general host material for the efficient storage of alkali metal ions , 2020 .

[2]  Tingting Xu,et al.  Advanced carbon nanostructures for future high performance sodium metal anodes , 2020 .

[3]  H. Yang,et al.  Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO. , 2020, Nanoscale.

[4]  D. Shchukin,et al.  Black BiVO4: size tailored synthesis, rich oxygen vacancies, and sodium storage performance , 2020, Journal of Materials Chemistry A.

[5]  Tingting Xu,et al.  Facile synthesis of MOFs derived Fe7S8/C composites for high capacity and long-life rechargeable lithium/sodium batteries , 2019, Applied Surface Science.

[6]  S. Kaskel,et al.  Mesoporous Thin-wall Molybdenum Nitride for Fast and Stable Na/Li -Storage. , 2019, ACS applied materials & interfaces.

[7]  J. Bao,et al.  Enabling Superior Electrochemical Properties for Highly Efficient Potassium Storage by Impregnating Ultrafine Sb Nanocrystals within Nanochannel‐Containing Carbon Nanofibers , 2019, Angewandte Chemie.

[8]  Wentao Hu,et al.  Turbostratic carbon-localised FeS2 nanocrystals as anodes for high-performance sodium-ion batteries. , 2019, Nanoscale.

[9]  S. Kaskel,et al.  Three-dimensional ordered mesoporous cobalt nitride for fast-kinetics and stable-cycling lithium storage , 2019, Journal of Materials Chemistry A.

[10]  Tingting Xu,et al.  Design and understanding of core/branch-structured VS2 nanosheets@CNTs as high-performance anode materials for lithium-ion batteries. , 2019, Nanoscale.

[11]  H. Xin,et al.  In situ visualization of sodium transport and conversion reactions of FeS2 nanotubes made by morphology engineering , 2019, Nano Energy.

[12]  Weitang Yao,et al.  One-dimensional Fe7S8@C nanorods as anode materials for high-rate and long-life lithium-ion batteries , 2019, Applied Surface Science.

[13]  J. Bao,et al.  Hierarchical Nanospheres Constructed by Ultrathin MoS2 Nanosheets Braced on Nitrogen-Doped Carbon Polyhedra for Efficient Lithium and Sodium Storage. , 2018, ACS applied materials & interfaces.

[14]  Seung‐Taek Myung,et al.  Marcasite iron sulfide as a high-capacity electrode material for sodium storage , 2018 .

[15]  F. Du,et al.  Hierarchical flower-like VS2 nanosheets – A high rate-capacity and stable anode material for sodium-ion battery , 2018 .

[16]  M. Guo,et al.  Pyrite FeS2@C nanorods as smart cathode for sodium ion battery with ultra-long lifespan and notable rate performance from tunable pseudocapacitance , 2018 .

[17]  Jun Liu,et al.  Robust Pitaya-Structured Pyrite as High Energy Density Cathode for High-Rate Lithium Batteries. , 2017, ACS nano.

[18]  X. Lou,et al.  Structure-designed synthesis of FeS2@C yolk–shell nanoboxes as a high-performance anode for sodium-ion batteries , 2017 .

[19]  Tingting Xu,et al.  Porous NiO hollow quasi-nanospheres derived from a new metal-organic framework template as high-performance anode materials for lithium ion batteries , 2017, Ionics.

[20]  L. Mai,et al.  Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage , 2017 .

[21]  Changyu Shen,et al.  Pyrite FeS2 microspheres anchoring on reduced graphene oxide aerogel as an enhanced electrode material for sodium-ion batteries , 2017 .

[22]  Xing-long Wu,et al.  Metastable Marcasite-FeS2 as a New Anode Material for Lithium Ion Batteries: CNFs-Improved Lithiation/Delithiation Reversibility and Li-Storage Properties. , 2017, ACS applied materials & interfaces.

[23]  Shizhong Cui,et al.  Design of FeS2@rGO composite with enhanced rate and cyclic performances for sodium ion batteries , 2017 .

[24]  Feiying Jin,et al.  MOF-templated nanorice–nanosheet core–satellite iron dichalcogenides by heterogeneous sulfuration for high-performance lithium ion batteries , 2016 .

[25]  Yang Liu,et al.  Hollow K0.27MnO2 Nanospheres as Cathode for High-Performance Aqueous Sodium Ion Batteries. , 2016, ACS applied materials & interfaces.

[26]  Jun Chen,et al.  Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures , 2016, Nano Research.

[27]  Adam P. Cohn,et al.  Ultrafine Iron Pyrite (FeS₂) Nanocrystals Improve Sodium-Sulfur and Lithium-Sulfur Conversion Reactions for Efficient Batteries. , 2015, ACS nano.

[28]  Yudi Mo,et al.  Three-dimensional NiCo2O4 nanowire arrays: preparation and storage behavior for flexible lithium-ion and sodium-ion batteries with improved electrochemical performance , 2015 .

[29]  A. Manthiram,et al.  VO2/rGO nanorods as a potential anode for sodium- and lithium-ion batteries , 2015 .

[30]  Xiulei Ji,et al.  Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling , 2015, Nature Communications.

[31]  W. Chu,et al.  Hollow amorphous NaFePO4 nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries , 2015 .

[32]  Jun Chen,et al.  Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries , 2015 .

[33]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[34]  Xiao‐Qing Yang,et al.  The new electrochemical reaction mechanism of Na/FeS2 cell at ambient temperature , 2014 .

[35]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[36]  B. Iversen,et al.  Atomic properties and chemical bonding in the pyrite and marcasite polymorphs of FeS2: a combined experimental and theoretical electron density study , 2014 .

[37]  S. Hara,et al.  Discharge/charge reaction mechanism of a pyrite-type FeS2 cathode for sodium secondary batteries , 2014 .

[38]  Bruce Dunn,et al.  High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. , 2013, Nature materials.

[39]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[40]  Zhiyu Wang,et al.  Metal Oxide Hollow Nanostructures for Lithium‐ion Batteries , 2012, Advanced materials.

[41]  R. Hamers,et al.  Synthesis and properties of semiconducting iron pyrite (FeS2) nanowires. , 2012, Nano letters.

[42]  X. Lou,et al.  LiNi(0.5)Mn(1.5)O4 hollow structures as high-performance cathodes for lithium-ion batteries. , 2012, Angewandte Chemie.

[43]  G. Ceder,et al.  First-principles electronic structure and relative stability of pyrite and marcasite: Implications for photovoltaic performance , 2011 .

[44]  S. Sablé,et al.  Microbiologically influenced corrosion process of archaeological iron nails from the sixteenth century , 2010 .

[45]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.

[46]  Tran Hai Nam,et al.  Electrochemical characteristics of Na/FeS2 battery by mechanical alloying , 2008 .