Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties.

A broad organic-inorganic series of hybrid metal iodide perovskites with the general formulation AMI3, where A is the methylammonium (CH3NH3(+)) or formamidinium (HC(NH2)2(+)) cation and M is Sn (1 and 2) or Pb (3 and 4) are reported. The compounds have been prepared through a variety of synthetic approaches, and the nature of the resulting materials is discussed in terms of their thermal stability and optical and electronic properties. We find that the chemical and physical properties of these materials strongly depend on the preparation method. Single crystal X-ray diffraction analysis of 1-4 classifies the compounds in the perovskite structural family. Structural phase transitions were observed and investigated by temperature-dependent single crystal X-ray diffraction in the 100-400 K range. The charge transport properties of the materials are discussed in conjunction with diffuse reflectance studies in the mid-IR region that display characteristic absorption features. Temperature-dependent studies show a strong dependence of the resistivity as a function of the crystal structure. Optical absorption measurements indicate that 1-4 behave as direct-gap semiconductors with energy band gaps distributed in the range of 1.25-1.75 eV. The compounds exhibit an intense near-IR photoluminescence (PL) emission in the 700-1000 nm range (1.1-1.7 eV) at room temperature. We show that solid solutions between the Sn and Pb compounds are readily accessible throughout the composition range. The optical properties such as energy band gap, emission intensity, and wavelength can be readily controlled as we show for the isostructural series of solid solutions CH3NH3Sn(1-x)Pb(x)I3 (5). The charge transport type in these materials was characterized by Seebeck coefficient and Hall-effect measurements. The compounds behave as p- or n-type semiconductors depending on the preparation method. The samples with the lowest carrier concentration are prepared from solution and are n-type; p-type samples can be obtained through solid state reactions exposed in air in a controllable manner. In the case of Sn compounds, there is a facile tendency toward oxidation which causes the materials to be doped with Sn(4+) and thus behave as p-type semiconductors displaying metal-like conductivity. The compounds appear to possess very high estimated electron and hole mobilities that exceed 2000 cm(2)/(V s) and 300 cm(2)/(V s), respectively, as shown in the case of CH3NH3SnI3 (1). We also compare the properties of the title hybrid materials with those of the "all-inorganic" CsSnI3 and CsPbI3 prepared using identical synthetic methods.

[1]  David B Mitzi,et al.  Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. , 2005, Inorganic chemistry.

[2]  K. Sakai,et al.  Lead Halide-based Layered Perovskites Incorporated with a p-Terphenyl Laser Dye , 2005 .

[3]  Koji Yamada,et al.  Structure and Bonding of Two Modifications of CsSnI3 by Means of Powder X-Ray Diffraction, 127I NQR, and DTA , 1989 .

[4]  Takashi Kondo,et al.  Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3 , 2003 .

[5]  Christine Lode,et al.  Iodostannate mit polymeren Anionen: (Me3PhN)4 ∞2[Sn3I10], [Me2HN–(CH2)2–NMe2H]2 ∞1[Sn3I10] und [Me2HN–(CH2)2–NMe2H] ∞2[Sn3I8] , 2001 .

[6]  J. Donaldson,et al.  Evidence for the direct population of solid-state bands by non-bonding electron pairs in compounds of the type CsMIIX3(MII= Ge, Sn, Pb; X = Cl, Br, I) , 1995 .

[7]  H. Stokes,et al.  Octahedral tilting in cation-ordered perovskites--a group-theoretical analysis. , 2004, Acta crystallographica. Section B, Structural science.

[8]  K. Mereiter,et al.  The Structures of Potassium Lead Triiodide Dihydrate and Ammonium Lead Triiodide Dihydrate , 1980 .

[9]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[10]  J. J. Wang,et al.  Synthesis and characterization of CsSnI3 thin films , 2010 .

[11]  Martin Schreyer,et al.  Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications , 2013 .

[12]  D. Mitzi,et al.  Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets , 1995, Science.

[13]  W. G. Fisher,et al.  Crystal preparation and properties of cesium tin(II) trihalides , 1974 .

[14]  David B. Mitzi,et al.  Synthesis and Characterization of [NH2C(I):NH2]3MI5 (M = Sn, Pb): Stereochemical Activity in Divalent Tin and Lead Halides Containing Single .ltbbrac.110.rtbbrac. Perovskite Sheets , 1995 .

[15]  T. White,et al.  Twin Boundaries in Perovskite , 1985 .

[16]  Koji Yamada,et al.  Tunable Perovskite Semiconductor CH3NH3SnX3 (X: Cl, Br, or I) Characterized by X-ray and DTA , 2011 .

[17]  N. Jaidane,et al.  Raman study of low temperature phase transitions in the cubic perovskite CH3NH3PbCI3 , 1998 .

[18]  O. Knop,et al.  Alkylammonium lead halides. Part 1. Isolated PbI64− ions in (CH3NH3)4PbI6•2H2O , 1987 .

[19]  R. Pöttgen,et al.  Sn3I8 x 2 (18-crown-6): a mixed-valent tin-crown-ether complex. , 2009, Inorganic chemistry.

[20]  H. Mashiyama,et al.  Structural Study on Cubic–Tetragonal Transition of CH3NH3PbI3 , 2002 .

[21]  David B. Mitzi,et al.  Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb) , 1996 .

[22]  O. Knop,et al.  Cation rotation in methylammonium lead halides , 1985 .

[23]  W. Braun,et al.  Prinzip und Meßmethodik der diffusen Reflexionsspektroskopie , 1963 .

[24]  Cherie R. Kagan,et al.  Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors , 1999, Science.

[25]  G. Papavassiliou,et al.  Three- and low-dimensional inorganic semiconductors , 1997 .

[26]  D. Mitzi,et al.  Synthesis, Resistivity, and Thermal Properties of the Cubic Perovskite NH2CH=NH2SnI3and Related Systems , 1997 .

[27]  S. D. Mahanti,et al.  Electronic structure and transport of Bi 2 Te 3 and BaBiTe 3 , 2000 .

[28]  Christine Lode,et al.  Übergangsmetallionen in Iodostannaten: Die Kristallstrukturen von [Co(en)3]4[Sn3I12]I2 und $^{3}_{\infty}\rm [Co(en)_{4}SnI_{4}]$ , 2007 .

[29]  H. Kay,et al.  Structure and properties of CaTiO3 , 1957 .

[30]  M. Feng,et al.  Hybrid polymeric iodoplumbates constructed from morpholine and its derivatives: structures and properties. , 2010, Dalton transactions.

[31]  Ewan D. Dunlop,et al.  A luminescent solar concentrator with 7.1% power conversion efficiency , 2008 .

[32]  W. Jin,et al.  Larger spontaneous polarization ferroelectric inorganic-organic hybrids: [PbI3](infinity) chains directed organic cations aggregation to Kagomé-shaped tubular architecture. , 2010, Journal of the American Chemical Society.

[33]  Zhongjia Tang,et al.  A Methylviologen Lead(II) Iodide: Novel [PbI3-]∞ Chains with Mixed Octahedral and Trigonal Prismatic Coordination , 1999 .

[34]  I. Swainson,et al.  Orientational ordering, tilting and lone-pair activity in the perovskite methylammonium tin bromide, CH3NH3SnBr3. , 2010, Acta crystallographica. Section B, Structural science.

[35]  A. Sanchez-Herencia,et al.  Mössbauer spectra of tin(IV) iodide complexes , 1999 .

[36]  J. J. Wang,et al.  Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3 , 2011 .

[37]  M. Kanatzidis,et al.  Single-crystal mesostructured semiconductors with cubic Ia3d symmetry and ion-exchange properties. , 2002, Journal of the American Chemical Society.

[38]  D. Trots,et al.  High-temperature structural evolution of caesium and rubidium triiodoplumbates , 2008 .

[39]  R. Xiong,et al.  Metal-organic complex ferroelectrics. , 2011, Chemical Society reviews.

[40]  D. Mitzi,et al.  Conducting tin halides with a layered organic-based perovskite structure , 1994, Nature.

[41]  I. Hechenbleikner,et al.  Synthesis of the sym-Triazine System. I. Trimerization and Cotrimerization of Amidines , 1959 .

[42]  J. J. Wang,et al.  Photoluminescence study of polycrystalline CsSnI3 thin films: Determination of exciton binding energy , 2012 .

[43]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[44]  H. Kimura,et al.  Disordered Configuration of Methylammonium of CH3NH3PbBr3 Determined by Single Crystal Neutron Diffractometry , 2007 .

[45]  T. Matsui,et al.  Structural phase transitions of the polymorphs of CsSnI3 by means of rietveld analysis of the X-ray diffraction. , 1991 .

[46]  Hao Li,et al.  CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. , 2012, Journal of the American Chemical Society.

[47]  Richard L. Harlow,et al.  Preparation and characterization of layered lead halide compounds , 1991 .

[48]  G. Papavassiliou,et al.  Structural, optical and related properties of some natural three- and lower-dimensional semiconductor systems , 1995 .

[49]  David B. Mitzi,et al.  Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3 , 1995 .

[50]  Anthony L. Spek,et al.  Journal of , 1993 .

[51]  K. Gesi Effect of hydrostatic pressure on the structural phase transitions in CH3NH3PbX3 (X = Cl, Br, I) , 1997 .

[52]  Xintao Wu,et al.  Structural overview and structure–property relationships of iodoplumbate and iodobismuthate , 2009 .

[53]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[54]  David B. Mitzi,et al.  Solution-processed inorganic semiconductors , 2004 .

[55]  G. Cantele,et al.  Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides , 2008 .

[56]  C. Howard Structures and phase transitions in perovskites--a group-theoretical approach. , 2005, Acta Crystallographica Section A Foundations of Crystallography.

[57]  R. Howie,et al.  The crystal structure of tin(II) iodide , 1972 .

[58]  D. Mitzi,et al.  Synthesis and Characterization of [NH2C(I)NH2]2ASnI5 with A = Iodoformamidinium or Formamidinium: The Chemistry of Cyanamide and Tin(II) Iodide in Concentrated Aqueous Hydriodic Acid Solutions , 1998 .

[59]  O. Yamamuro,et al.  p-T phase relations of CH3NH3PbX3 (X = Cl, Br, I) crystals , 1992 .

[60]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[61]  D. J. Lagouvardos,et al.  Spectroscopic studies of (C10H21NH3)2PbI4, (CH3NH3)(C10H21NH3)2Pb2I7, (CH3NH3) PbI3, and similar compounds , 1993 .

[62]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[63]  T. Inabe,et al.  Tunable Charge Transport in Soluble Organic–Inorganic Hybrid Semiconductors , 2007 .

[64]  M. White,et al.  Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation , 1990 .

[65]  H. Stokes,et al.  Group-theoretical analysis of octahedral tilting in perovskites , 1998 .

[66]  Zhongjia Tang,et al.  α-[NH3(CH2)5NH3]SnI4: a new layered perovskite structure , 1999 .

[67]  H. Krautscheid,et al.  Discrete and polymeric iodoplumbates with Pb3I10 building blocks: [Pb3I10]4–, [Pb7I22]8–, [Pb10I28]8–, 1∞[Pb3I10]4– and 2∞[Pb7I18]4– , 1999 .

[68]  N. Louvain,et al.  Structural diversity and retro-crystal engineering analysis of iodometalate hybrids , 2009 .

[69]  Laura L. Kosbar,et al.  Structurally Tailored Organic−Inorganic Perovskites: Optical Properties and Solution-Processed Channel Materials for Thin-Film Transistors , 2001 .

[70]  N. Louvain,et al.  Reduced Band Gap Hybrid Perovskites Resulting from Combined Hydrogen and Halogen Bonding at the Organic−Inorganic Interface , 2007 .

[71]  Christine Lode and,et al.  Übergangsmetallionen in Iodostannaten: Die Kristallstrukturen von [Co(en)3]4[Sn3I12]I2 und † , 2007 .

[72]  Kiyoyuki Terakura,et al.  Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. , 2011, Dalton transactions.

[73]  C. K. Møller Crystal Structure and Photoconductivity of Cæsium Plumbohalides , 1958 .

[74]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[75]  Christine Lode,et al.  Iodostannate(II) mit kettenförmigen ∞1[SnI3]–‐Anionen – der Übergang von fünffach zu sechsfach koordinierten SnII‐Zentralatomen , 2001 .

[76]  D. Billing,et al.  Inorganic–organic hybrid materials incorporating primary cyclic ammonium cations: The lead bromide and chloride series , 2009 .

[77]  C. K. Møller A Phase Transition in Cæsium Plumbochloride , 1957 .

[78]  Kazuo Fueki,et al.  Ionic conduction of the perovskite-type halides , 1983 .

[79]  M. Kanatzidis,et al.  A New Metastable Three-Dimensional Bismuth Sulfide with Large Tunnels: Synthesis, Structural Characterization, Ion-Exchange Properties, and Reactivity of KBi3S5 , 1995 .

[80]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[81]  David B. Mitzi,et al.  Electroluminescence from an Organic−Inorganic Perovskite Incorporating a Quaterthiophene Dye within Lead Halide Perovskite Layers , 1999 .

[82]  Z. Tang,et al.  A New Luminescent Organic–Inorganic Hybrid Compound with Large Optical Nonlinearity , 2001 .

[83]  P. Mauersberger,et al.  Structure of caesium triiodostannate(II) , 1980 .

[84]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[85]  Christine Lode,et al.  Schwache Sn…I‐Wechselwirkungen in den Kristallstrukturen der Iodostannate [SnI4]2– und [SnI3]– , 2000 .

[86]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[87]  Zhongjia Tang,et al.  Synthesis and crystal structure of new organic-based layered perovskites with 2,2′-biimidazolium cations , 2001 .

[88]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[89]  Optical and related properties of natural one-dimensional semiconductors based on PbI and SnI units , 1997 .

[90]  G. Nord Transformation-induced twin boundaries in minerals , 1994 .