Synthesis and structural characterization of novel cyclam-based zirconium complexes and their use in the controlled ROP of rac-lactide: access to cyclam-functionalized polylactide materials.

Novel Bn(2)Cyclam-based zirconium complexes of the type (Bn(2)Cyclam)Zr(X)(X') (3, X = X' = OPh; 4, X = X' = SPh; 5, X = Cl, X' = O(i)Pr) were synthesized in good yields via metathesis routes involving the reaction of the dichloro precursor (Bn(2)Cyclam)Zr(Cl)(2) and the appropriate lithium salts. The molecular structures of compounds 3, 4 and 5, as determined by X-ray crystallographic studies, all confirmed the effective chelation of the Bn(2)Cyclam ligand in a κ(4)-N(2)N(2)' fashion, with the hexa-coordinated Zr center adopting a trigonal prismatic geometry. Complexes 3-5 as well as the diisopropoxide derivative (Bn(2)Cyclam)Zr(O(i)Pr)(2) (2) were all found to initiate the ring-opening polymerization (ROP) of rac-lactide in a controlled manner, as deduced from SEC data and linear correlations between molecular weight numbers (M(n)) and monomer conversion as the ROP proceeds. While initiator 2 polymerizes rac-lactide to afford, as expected, an O(i)Pr-ester-end PLA, the ROP of rac-lactide by species 3 or 4 affords an unusual cyclam-end group PLA, as deduced from MALDI-TOF data. The bonding and the electronic structures of the dialkoxides 2 and 3 were assessed by DFT and their possible influence on the polymerization mechanism is discussed.

[1]  R. Welter,et al.  Highly active zinc alkyl cations for the controlled and immortal ring-opening polymerization of ε-caprolactone. , 2012, Dalton transactions.

[2]  T. Roisnel,et al.  Synthetic and mechanistic aspects of the immortal ring-opening polymerization of lactide and trimethylene carbonate with new homo- and heteroleptic tin(II)-phenolate catalysts. , 2012, Chemistry.

[3]  Paul G. Hayes,et al.  Ring-opening polymerisation of rac-lactide mediated by cationic zinc complexes featuring P-stereogenic bisphosphinimine ligands. , 2012, Dalton transactions.

[4]  C. Pellecchia,et al.  Coordination chemistry and reactivity of zinc complexes supported by a phosphido pincer ligand. , 2012, Chemistry.

[5]  Charlotte K. Williams,et al.  Phosphasalen yttrium complexes: highly active and stereoselective initiators for lactide polymerization. , 2012, Inorganic chemistry.

[6]  Sonja Herres-Pawlis,et al.  Lactide Polymerisation with Complexes of Neutral N‐Donors – New Strategies for Robust Catalysts , 2012 .

[7]  B. Heinrich,et al.  A robust zirconium N-heterocyclic carbene complex for the living and highly stereoselective ring-opening polymerization of rac-lactide. , 2012, Chemical communications.

[8]  Chia‐Her Lin,et al.  Zinc and magnesium complexes incorporated by bis(amine) benzotriazole phenoxide ligand: synthesis, characterization, photoluminescent properties and catalysis for ring-opening polymerization of lactide. , 2012, Dalton transactions.

[9]  Ana M Martins,et al.  Cyclam functionalization through isocyanate insertion in Zr-N bonds. , 2012, Inorganic chemistry.

[10]  J. Okuda,et al.  Initiators for the stereoselective ring-opening polymerization of meso-lactide , 2011 .

[11]  Matthew D. Jones,et al.  Group 4 initiators for the stereoselective ROP of rac-β-butyrolactone and its copolymerization with rac-lactide. , 2011, Chemical communications.

[12]  Dongmei Cui,et al.  Heteroscorpionate rare-earth metal zwitterionic complexes: syntheses, characterization, and heteroselective catalysis on the ring-opening polymerization of rac-lactide. , 2011, Chemistry.

[13]  J. Okuda,et al.  Controlled stereoselective polymerization of lactide monomers by group 4 metal initiators that contain an (OSSO)-type tetradentate bis(phenolate) ligand , 2011 .

[14]  D. Bourissou,et al.  A dual organic/organometallic approach for catalytic ring-opening polymerization. , 2011, Chemical communications.

[15]  Charlotte K. Williams,et al.  Bis(phosphinic)diamido yttrium amide, alkoxide, and aryloxide complexes: an evaluation of lactide ring-opening polymerization initiator efficiency. , 2011, Inorganic chemistry.

[16]  T. Roisnel,et al.  Discrete, solvent-free alkaline-earth metal cations: metal···fluorine interactions and ROP catalytic activity. , 2011, Journal of the American Chemical Society.

[17]  J. Fernández-Baeza,et al.  Stereoselective Production of Poly(rac-lactide) by ROP with Highly Efficient Bulky Heteroscorpionate Alkylmagnesium Initiators , 2011 .

[18]  J. Okuda,et al.  Group 4 metal initiators for the controlled stereoselective polymerization of lactide monomers. , 2011, Chemical communications.

[19]  J. Carpentier,et al.  Exploring electronic versus steric effects in stereoselective ring-opening polymerization of lactide and β-butyrolactone with amino-alkoxy-bis(phenolate)-yttrium complexes. , 2011, Chemistry.

[20]  P. Mountford,et al.  Cationic and charge-neutral calcium tetrahydroborate complexes and their use in the controlled ring-opening polymerisation of rac-lactide. , 2011, Chemical communications.

[21]  T. Roisnel,et al.  Zinc and magnesium complexes supported by bulky multidentate amino-ether phenolate ligands: potent pre-catalysts for the immortal ring-opening polymerisation of cyclic esters. , 2011, Dalton transactions.

[22]  J. Okuda,et al.  Stereoselective Polymerization of meso-Lactide: Syndiotactic Polylactide by Heteroselective Initiators Based on Trivalent Metals , 2010 .

[23]  Paul G. Hayes,et al.  Cationic zinc complexes: a new class of catalyst for living lactide polymerization at ambient temperature. , 2010, Chemical communications.

[24]  A. Otero,et al.  C-ansa-zirconocene complexes with O/S donor ligands: Novel homoleptic six coordinate 4-mercaptophenolate complex of Zr(IV) , 2010 .

[25]  Wen‐Hua Sun,et al.  Synthesis and characterisation of alkylaluminium benzimidazolates and their use in the ring-opening polymerisation of ε-caprolactone. , 2010, Dalton transactions.

[26]  P. Mountford,et al.  Ligand Variations in New Sulfonamide-Supported Group 4 Ring-Opening Polymerization Catalysts , 2010 .

[27]  M. A. Antunes,et al.  Structure and Reactivity of Neutral and Cationic trans-N,N′-Dibenzylcyclam Zirconium Alkyl Complexes , 2010 .

[28]  T. Roisnel,et al.  Discrete, Base‐Free, Cationic Alkaline‐Earth Complexes – Access and Catalytic Activity in the Polymerization of Lactide , 2010 .

[29]  Haiyan Ma,et al.  Highly Active Magnesium Initiators for Ring-Opening Polymerization of rac-Lactide , 2010 .

[30]  L. Maron,et al.  Ring-Opening Polymerization of rac-Lactide by Bis(phenolate)amine-Supported Samarium Borohydride Complexes: An Experimental and DFT Study , 2010 .

[31]  C. Redshaw,et al.  Metal catalysts for ε-caprolactone polymerisation , 2010 .

[32]  Christophe M. Thomas Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. , 2010, Chemical Society reviews.

[33]  A. Fernandes,et al.  Reactivity of a new family of diamido-diamine cyclam-based zirconium complexes in ethylene polymerization , 2010 .

[34]  C. Redshaw,et al.  Iron(III) and zinc(II) calixarene complexes: synthesis, structural studies, and use as procatalysts for epsilon-caprolactone polymerization. , 2010, Chemistry, an Asian journal.

[35]  S. Bellemin‐Laponnaz,et al.  Synthesis and Structural Characterization of a Novel Family of Titanium Complexes Bearing a Tridentate Bis-phenolate-N-heterocyclic Carbene Dianionic Ligand and Their Use in the Controlled ROP of rac-Lactide , 2010 .

[36]  N. Nomura,et al.  Random copolymerization of epsilon-caprolactone with lactide using a homosalen-Al complex. , 2010, Journal of the American Chemical Society.

[37]  Pierre Haquette,et al.  Synthesis and structural characterization of well-defined anionic aluminum alkoxide complexes supported by NON-type diamido ether tridentate ligands and their use for the controlled ROP of lactide. , 2010, Dalton transactions.

[38]  R. Duchateau,et al.  Dicationic and zwitterionic catalysts for the amine-initiated, immortal ring-opening polymerisation of rac-lactide: facile synthesis of amine-terminated, highly heterotactic PLA. , 2010, Chemical communications.

[39]  Matthew D. Jones,et al.  Novel Ti(IV) and Zr(IV) complexes and their application in the ring-opening polymerisation of cyclic esters. , 2009, Dalton transactions.

[40]  P. Mountford,et al.  Sulfonamide-supported group 4 catalysts for the ring-opening polymerization of epsilon-caprolactone and rac-lactide. , 2009, Inorganic chemistry.

[41]  M. Duarte,et al.  Synthesis and structural studies of amido, hydrazido and imido zirconium(IV) complexes incorporating a diamido/diamine cyclam-based ligand. , 2009, Dalton transactions.

[42]  R. Waterman,et al.  General Preparation of (N3N)ZrX (N3N = N(CH2CH2NSiMe3)33−) Complexes from a Hydride Surrogate , 2009 .

[43]  A. P. Dove Controlled ring-opening polymerisation of cyclic esters: polymer blocks in self-assembled nanostructures. , 2008, Chemical communications.

[44]  M. Duarte,et al.  trans-Disubstituted diamido/diamine cyclam zirconium complexes , 2008 .

[45]  Matthew D. Jones,et al.  Highly active and stereoselective zirconium and hafnium alkoxide initiators for solvent-free ring-opening polymerization of rac-lactide. , 2008, Chemical communications.

[46]  Charlotte K. Williams,et al.  Biocompatible Initiators for Lactide Polymerization , 2008 .

[47]  U. Häfeli,et al.  One-pot syntheses, coordination, and characterization of application-specific biodegradable ligand-polymers. , 2007, Dalton transactions.

[48]  Junseong Lee,et al.  Novel chlorotitanium complexes containing chiral tridentate schiff base ligands for ring-opening polymerization of lactide. , 2007, Inorganic chemistry.

[49]  C. Laurencin,et al.  Biodegradable polymers as biomaterials , 2007 .

[50]  M. Duarte,et al.  Amido/amine triazacyclononane-based zirconium complexes: syntheses, reactivity, and structures. , 2007, Inorganic chemistry.

[51]  S. Namorado,et al.  Diamido/diamine cyclam-based zirconium and hafnium complexes: Synthesis and characterization , 2006 .

[52]  I. Goldberg,et al.  Titanium and zirconium complexes of dianionic and trianionic amine-phenolate-type ligands in catalysis of lactide polymerization. , 2006, Inorganic chemistry.

[53]  Jincai Wu,et al.  Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters , 2006 .

[54]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[55]  V. Balzani,et al.  Dendrimers based on a bis-cyclam core as fluorescence sensors for metal ions , 2005 .

[56]  Michel Vert,et al.  Aliphatic polyesters: great degradable polymers that cannot do everything. , 2005, Biomacromolecules.

[57]  Robert Pansu,et al.  Metal-chelating nanoparticles as selective fluorescent sensor for Cu2+. , 2004, Chemical communications.

[58]  Odile Dechy-Cabaret,et al.  Controlled ring-opening polymerization of lactide and glycolide. , 2004, Chemical reviews.

[59]  P. Sadler,et al.  Cyclam complexes and their applications in medicine. , 2004, Chemical Society reviews.

[60]  M. Duarte,et al.  Insertion of Isocyanides into Group 4 Metal−Carbon and Metal−Nitrogen Bonds. Syntheses and DFT Calculations , 2003 .

[61]  J. Verkade,et al.  Titanium alkoxides as initiators for the controlled polymerization of lactide. , 2003, Inorganic chemistry.

[62]  J. Pople,et al.  Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements , 2002 .

[63]  C. Fraser,et al.  Biocompatible polyester macroligands: new subunits for the assembly of star-shaped polymers with luminescent and cleavable metal cores. , 2001, Biomacromolecules.

[64]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[65]  Maria Cristina Burla,et al.  SIR97: a new tool for crystal structure determination and refinement , 1999 .

[66]  J. Tomasi,et al.  Ab initio study of ionic solutions by a polarizable continuum dielectric model , 1998 .

[67]  M. Ashby,et al.  Misdirected π-donor ligands: (η5-C5H5)2Zr(Cl) (SR) with sterically more demanding R groups have lower rotational barriers , 1998 .

[68]  V. Yam,et al.  Synthesis of luminescent zirconium thiolate complexes. Crystal structures of (η5-C5H5)2Zr(SC6H4Cl-p)2 and [(η5-C5H5)2Zr(SC6H4OMe-p)]2O , 1997 .

[69]  Louis J. Farrugia,et al.  ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI) , 1997 .

[70]  Jacopo Tomasi,et al.  A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics , 1997 .

[71]  Jacopo Tomasi,et al.  Continuum solvation models: A new approach to the problem of solute’s charge distribution and cavity boundaries , 1997 .

[72]  T. Aida,et al.  Metalloporphyrins as Initiators for Living and Immortal Polymerizations , 1996 .

[73]  G. Parkin,et al.  SYNTHESES OF THE PHENYLCHALCOGENOLATE COMPLEXES (ETA 5-C5ME5)2ZR(EPH)2 (E = O, S, SE, TE) AND (ETA 5-C5H5)2ZR(OPH)2 : STRUCTURAL COMPARISONS WITHIN A SERIES OF COMPLEXES CONTAINING ZIRCONIUM-CHALCOGEN SINGLE BONDS , 1995 .

[74]  Gernot Frenking,et al.  A set of f-polarization functions for pseudo-potential basis sets of the transition metals ScCu, YAg and LaAu , 1993 .

[75]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[76]  L. Curtiss,et al.  Compact contracted basis sets for third‐row atoms: Ga–Kr , 1990 .

[77]  P. van der Sluis,et al.  BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions , 1990 .

[78]  Krishnan Raghavachari,et al.  Highly correlated systems. Ionization energies of first row transition metals Sc–Zn , 1989 .

[79]  Hermann Stoll,et al.  Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr , 1989 .

[80]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[81]  John E. Carpenter,et al.  Analysis of the geometry of the hydroxymethyl radical by the “different hybrids for different spins” natural bond orbital procedure , 1988 .

[82]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[83]  Warren J. Hehre,et al.  Molecular orbital theory of the properties of inorganic and organometallic compounds 5. Extended basis sets for first‐row transition metals , 1987 .

[84]  T. Aida,et al.  Formation of poly(lactide) with controlled molecular weight: polymerization of lactide by aluminum porphyrin , 1987 .

[85]  W. Hehre,et al.  Molecular orbital theory of the properties of inorganic and organometallic compounds 4. Extended basis sets for third‐and fourth‐row, main‐group elements , 1986 .

[86]  F. Weinhold,et al.  Natural population analysis , 1985 .

[87]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[88]  Timothy Clark,et al.  Efficient diffuse function‐augmented basis sets for anion calculations. III. The 3‐21+G basis set for first‐row elements, Li–F , 1983 .

[89]  Frank Weinhold,et al.  Natural bond orbital analysis of near‐Hartree–Fock water dimer , 1983 .

[90]  J. Pople,et al.  Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements , 1982 .

[91]  Mark S. Gordon,et al.  The isomers of silacyclopropane , 1980 .

[92]  Frank Weinhold,et al.  Natural hybrid orbitals , 1980 .

[93]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[94]  P. Jeffrey Hay,et al.  Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition‐metal atoms , 1977 .

[95]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[96]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[97]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[98]  A. Wachters,et al.  Gaussian Basis Set for Molecular Wavefunctions Containing Third‐Row Atoms , 1970 .

[99]  M. A. Antunes,et al.  Intramolecular hydroamination catalysis using trans-N,N′-dibenzylcyclam zirconium complexes , 2011 .

[100]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[101]  M. Eisen,et al.  Titanium and Zirconium Complexes for Polymerization of Propylene and Cyclic Esters , 2007 .

[102]  P. E. O'Connor,et al.  Zirconium complexes of a cross-bridged cyclam , 2005 .

[103]  A. Albertsson,et al.  Polymers from Renewable Resources , 2002 .

[104]  M. Hillmyer,et al.  Polymerization of lactide and related cyclic esters by discrete metal complexes , 2001 .

[105]  R. Rogers,et al.  Structural Trends in Group 4 Metal Tetraaza Macrocycle Complexes. Molecular Structures of (Me4taen)Zr(OtBu)2 and (Me4taen)Hf(NMe2)2 , 1997 .

[106]  F. Geyer,et al.  Journal of , 1993 .

[107]  L. Radom,et al.  Extension of Gaussian‐1 (G1) theory to bromine‐containing molecules , 1991 .

[108]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[109]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[110]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[111]  Mark S. Gordon,et al.  Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements , 1980 .

[112]  P. C. Hariharan,et al.  Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory , 1974 .

[113]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .